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ABSTRACT 

 

Diabetes mellitus (DM), a very common metabolic disease, is affecting 

millions of the people around the globe. Due to globalization, mechanization, and 

changes in human lifestyle and daily routines incidences of diabetes are 

continuously increasing. The objective of the present study is to investigate the 

quantitative structure-activity relationships of antidiabetic agents with regard to 

the future development of such ligands as agonists and antagonists. 

The QSAR studies on the imidazolopyrimidine amides, the (2S)-cyanopyrrolidine 

analogues and the derivatives of β-aminoamide bearing subsituted 

triazolopiperazines as dipeptidyl peptidase IV (DPP-4) inhibitors; PPARγ 

transactivation profiles of the derivatives of tetrahydroquinolines, benzylpyrazole 

acylsulfonamides and pyridyloxybenzene-acylsulfonamides; and GPR119 

agonistic activity of indole-based derivatives and triazolopyridines provided a 

rational approach for the development of titled derivatives as inhibitors or 

agonists. The QSAR rationales for these analogous were obtained in terms of 

Dragon descriptors using Combinatorial Protocol in Multiple Linear Regression 

(CP-MLR). The biological actions of these compounds have appeared as the 

cumulative influence of different structural features which were recognized in 

terms of individual descriptors. 
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PREFACE 

 Diabetes mellitus (DM), a very common metabolic disease, is affecting 

millions of the people around the globe. Due to globalization, mechanization, and 

changes in human lifestyle and daily routines incidences of diabetes are 

continuously increasing. β-Cells secrete insulin in islets of Langerhans as a 

response of elevated blood glucose. A severe increase in blood glucose induces a 

rapid release of insulin which is sustained for a short period (known as 1
st
 phase) 

and then followed by longer period of lower secretion (the 2
nd

 phase)) which 

accounts for the most part of secretion of insulin. Diabetes and its complications 

are the outcomes of progressive reduction in β-cell mass or secretory capacity 

resulting to abnormal glucose metabolism. Thus, DM is an entity of considerable 

morbidity consisting of a spectrum of multisystem dysfunctions arose from the 

combination of insulin resistance and inadequate insulin secretion. Type 1 

diabetes is caused usually by immune destruction of pancreatic islet cells, on the 

other hand type 2 is associated with metabolic conditions such as the insulin 

resistance, hyperglycemia, hypertension, obesity and hyperlipidemia. It is just like 

a tightrope walk, to manage diabetes as it  have need of an ample understanding of 

numerous factors such as over-all clinical picture, profile related to adverse 

effects,  the multifaceted inter-play of drugs, etc. The ranges of new antidiabetic 

drugs are continuously increasing with targeted novel facets of diabetes and that 

calls for ample consciousness by the treating clinicians. New therapeutics must be 

aimed at to treat diabetic patients at an earlier stage of the disease and able to 

address the multi-factorial nature of DM. 

 The objective of the present study is to investigate the quantitative 

structure-activity relationships of antidiabetic agents with regard to the future 

development of such ligands as agonists and antagonists. This, in turn, would 

assist in further proposing the possible mode of action, at molecular level, of these 

agents at the receptor of concern.   

 The work embodied in this thesis is focused on the derivation of various 

QSAR models, their validation, interpretation and forecasting new potential 



 

 

 

 

congeners, if appropriate. Sometimes, the mechanism of drug-receptor interaction 

has also been addressed. The work carried out is arranged into five chapters in this 

thesis. A brief introduction to the modeling techniques and the general 

methodology used to develop QSAR models is presented in the first chapter. 

 The second chapter gives an overview on the antidiabetic agents, based on the 

current FDA recommendations. Due to the elevated CVD risk in DM, all new 

anti-diabetic drugs show exemplary cardiovascular safety profiles. Thus, drugs 

that target molecular pathways having potential implications in both diabetes and 

CVD are especially desirable. The targeting of 11β-hydroxysteroid dehydrogenase 

type 1 (11β-HSD1), GPR119, TGR5, sirtuin 1 (SIRT1), the sodium-glucose co-

transporter 2 (SGLT2), and GPR40 are examples of such approaches and rationale 

of each of these is discussed in this chapter. 

 In the third chapter, the QSAR studies on the imidazolopyrimidine amides, 

the (2S)-cyanopyrrolidine analogues and the derivatives of β-aminoamide bearing 

subsituted triazolopiperazines as dipeptidyl peptidase IV (DPP-4) inhibitors have 

been discussed. The QSAR rationales for these analogous were obtained in terms 

of Dragon descriptors using Combinatorial Protocol in Multiple Linear Regression 

(CP-MLR). The DPP-4 inhibitory actions of these compounds have appeared as 

the cumulative influence of different structural features which were recognized in 

terms of individual descriptors. 

 The quantitative analysis carried out on the PPARγ transactivation profiles 

of the derivatives of tetrahydroquinolines, benzylpyrazole acylsulfonamides and 

pyridyloxybenzene-acylsulfonamides in terms of topological 0D- to 2D-

descriptors have been discussed in the fourth chapter. These analyses have 

provided a rational approach for the development of titled derivatives as PPARγ 

agonists. 

 The fifth chapter represents QSAR rationales for the GPR119 agonistic 

activity of indole-based derivatives and triazolopyridines. The derived QSAR 

models have provided a rational approach for the development of these 

derivatives as GPR119 agonists.  
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CHAPTER 1 

QSAR: METHODS AND PARAMETERS 

1. INTRODUCTION 

 From the beginning of civilization or may be long before, human brain is 

always in search of treatment of ailments. Initially man used herbs as medicines, 

but then in the mid-nineteenth century serious efforts were made to isolate and 

purify the active principles of these remedies. Since then a large variety of 

biological active compounds have been obtained and their structures were   

determined. Usually this is achieved by molecular modifications using the trial-

and-error approach, not by proper information. Though the properties indicating a 

certain molecule as a drug candidate were known, it was not really feasible to 

investigate a large number of molecules for such types of properties. Of course, 

the nature of these properties would be represented by structural features of a 

molecule and thus examination of certain motifs provided a direction for 

experimental investigation. The problem with this approach is that it does not 

always lead to an understanding of why a molecule behaves as a drug against its 

target or why it does not so. This procedure, with a demand of intensive long 

journey, is very expensive and yet less efficient. The reasons for this apparently 

low success are poor pharmacokinetics, toxicity, side effects and lack of efficacy. 

Thus, it is desirable that only those molecules with a good chance of activity 

should be prepared and tested. 

 To this end, the approach based on "rational drug-design" has been 

developed in which a new active compound is forecasted by modifying a carefully 

chosen "lead" structure through molecular manipulation. Thus, appropriate 

theoretical methods may be employed to have new potential compounds prior to 

their synthesis. First of all, Brown and Fraser [1] laid the foundation of an idea 

about the relationship between physiological or biological action of a compound 

and its chemical constitution. Presently, it is well established that the biological 

activity (BA) is a function of physicochemical (physical, structural, and chemical) 

properties i.e. chemical constitution C, which was later formulated in a 

mathematical expression of the type shown in Equation (1.1)  

   BA = f (C)                                                                (1.1) 
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 With this concept, structure-activity relationships established the novel 

strategies of chemical synthesis by inserting new chemical groups into the 

biomedical compound and test the modifications pertaining to their biological 

effects. This enables the identification and determination of the chemical groups 

responsible for inducing a targeted biological effect in the organism. That in turn 

resulted into new methods of finding, examining and interpreting the SAR, on a 

quantitative basis in a more systematic manner. This strategy has, therefore, been 

termed as quantitative structure-activity relationship (QSAR). 

 At present, a QSAR study has two important objectives one is the 

diagnostic and the other is predictive. The former, deals with the mechanistic 

aspect supporting or suggesting theories for the site of action. The later is 

concerned with the extrapolative and interpolative predictions based on the 

correlative approach. The interpolative prediction within spanned substituent 

species (SSS) is thought to be much more reliable as compared to extrapolative 

prediction outside SSS. In this way, the QSAR study has become an obligatory 

tool to rationalize the design of new bioactive compounds and to investigate their 

interaction with the living matter. 

2. METHODOLOGY 

 The prime goals of a correlative approach are (i) to search for the relevant 

parameters (descriptors) which can account for the variation in the observed 

biological activities of compounds in a congeneric series, and (ii) to determine the 

extent of correlation between a set of descriptors and the activity under 

investigation. Statistical and physical models have been developed for this 

purpose. However, the choice of a method relies profoundly on various factors 

such as the quality of biological data, the number of compounds to be tested, the 

degree of variance in results, and the ratio of time needed in synthesizing and 

testing the compounds for their biological activity. 

 To date a large matrix of QSAR methodologies have been developed to 

assist a medicinal chemist in his esteemed goal to have more potent compounds 

with lesser dependence on “trial-and-error” synthesis and testing. These are 

summarized as: 

(i) Manual methods: The Craig plots [2], the Topliss schemes [3, 4], the Simplex     
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search [5] and the Fibonacci search [6] 

(ii) Regression analysis methods: The Hansch analysis [7-12], the bilinear model      

of Kubinyi [13-16] and the Free-Wilson or Fujita-Ban approach [17-18] 

(iii) Pattern recognition methods: the learning machines [19], the K-nearest 

neighbor analysis [20-21] and the discriminate analysis [22] and  

(iv) Some other methods such as the probabilistic analysis [23], the factor analysis 

[24-26] and the cluster analysis [27]. 

 Different correlative approaches based on parametric (2- and 3-

dimensional) and non-parametric strategies and methods to compute molecular 

descriptors which are able to quantify the biological actions of drug molecules are 

given in Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Common methodologies used for QSAR analyses and computation of 

molecular descriptors. 
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approach, the linear multiple regression analysis (MRA) [28-29], employing the 

method of least squares, is used to find the "best fit" of a dependent variable, the 

biological activity to a linear combination of independent variables (descriptors). 

This is commonly expressed through a model Equation (1.2)  

 y=a0+a1x1+a2x2+---+an xn                                                  (1.2) 

       In this equation x1,x2------- etc. are the descriptors related to the contribution 

of substituents to the activity in a congeneric series; the dependent variable, y, is 

related to the biological response of a compound in the series, a1, a2, ----- etc., are 

the weights of descriptors, and a0 is the intercept. The magnitude of coefficients 

provides the information about the contribution of variables to the activity. Both 

the Hansch and the Free-Wilson/Fujita-Ban models are briefly described in the 

following sections.  

2.1. The Hansch Approach  

  The Hansch approach [7-9] is based on the Hammett's Linear Free-Energy 

Related (LFER) model. Amongst the various QSAR approaches it is the most 

widely and effectively used method. In this approach, the biological response is 

considered as a function of certain physicochemical and/or structural and/or 

topological properties of a molecule. Mathematically, the same is expressed 

through Equation (1.3)   

BA= a + bπ (or logP) + cπ2
(or logP

2
) + dσ+ eEs+ fS          (1.3)  

where π (or logP), σ and Es are, respectively, the hydrophobic, electronic and 

steric parameters, and S is a structural parameter defining the shape, size or the 

topography of a molecule. The numerals a, b, c, d, e and f are the regression 

coefficients associated to independent parameters. The biological activity (BA) is 

measured as negative logarithm of a standard biological response such as IC50, 

EC50,  LD50,  Ki  etc., on the molar basis. Equation (1.3) expresses a parabolic 

(rather than linear) dependence of activity on the hydrophobic character of 

molecules. Most often, the relationship between activity and lipophilicity, π or 

logP, was found to be strictly linear, and in such cases, the square of lipophilicity 

term in the above equation is dropped.  

 For the non-linear QSARs, the semi-empirical bilinear model of Kubinyi is 

a more flexible version of Equation (1.3) that allows for an optimum logP (or π) 
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but provides linear ascending and descending portion of the curve. The same is 

expressed through Equations (1.4) and (1.5) 

  BA = alogP – blog (βP + 1) + c                  (1.4)  

  BA = aπ – blog (10
πβ + 1) + c           (1.5) 

Where all the disposal parameters, a, b, c and β are evaluated using an iterative 

least square procedure.  

2.2. The Free Wilson/Fujita-Ban Approach  

 The Free-Wilson method [17] is based upon the assumption that the effect 

of a substituent on BA is additive and independent of the presence or absence of 

substituents at other positions. The same can quantitatively be expressed by 

Equation (1.6)  

 BA = ∑AijSij+ µ0                 (1.6)  

Here Aij is the activity contribution of substituent i at position j and Sij takes the 

value of 1 or 0 depending upon the presence or absence of substituent i at position 

j. The constant µ0 represents the overall average activity of the series. Solution of 

the set of simultaneous Equations (1.6), one for each compound, using MRA in a 

least square manner, gives the "best fit" parameter values of all Aij and µ0. 

 Fujita and Ban [18] suggested two modifications in the original 

formulation. First, the biological activity should be expressed as –logC or an 

equivalent measure proportional to a free-energy change so that derived substituent 

constants might be compared with other free-energy related parameters, and 

second, that µ0, the overall average, become analogous to an intercept, that is, the 

calculated activity of the unsubstituted (or the parent) compound of the series. This 

obviates the need for the cumbersome restricted equations of the original method.  

2.3. Validation Statistics 

 A number of statistics, for n data points, are also derived in conjunction 

with such calculations, which allows the statistical significance of the resulting 

correlation to be evaluated. The most important of these are, the standard error of 

estimates, s, which should be minimized, the multiple correlation coefficient 

squared, R
2
, accounting for the variance in observed activities, the explained 

variance, EV, being an adjusted coefficient of determination, measures the fraction 
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of variance between observed and calculated activities, and it should also be 

maximized for goodness of fit. In addition, the F-value, a statistic for assessing 

overall significance of the derived equation (statistics Tables list critical values for 

the appropriate number of degree of freedom and confidence level), the t-values 

(also compared with statistical Tables), and the confidence intervals (usually 95% 

or 90%) for the individual regression coefficient in the equation are also required 

to justify the equation statistically. Also very important, in multi-parameter 

equations, are the cross correlation coefficients, r amongst the descriptor variables 

of the MRA equation. To assure the true "independence" or "orthogonality" of the 

variables, these must be low. It is a necessary condition for meaningful results.  

 The derived regression equation should also be subjected to the validation 

test by the leave-one-out (LOO) [30] and leave-group-out (LGO) methods. In LOO 

procedure a compound is removed from the parent data set to generate modified 

data sets, in the form of reduced data sets, in such a manner that each one is 

excluded once only. Predictions of the response values for the excluded 

compounds are made on the basis of the developed model.  The predictive residual 

sum of squares (PRESS) is obtained by the addition of the squared difference 

between predicted and actual values. The formula (1– PRESS/SSY) is used to 

calculate the Q
2

LOO. The variance of the observed responses of data points around 

the mean value is denoted by SSY. A value greater than 0.5 of this cross-validated 

Q
2
-index, hints out that the model obtained is a reasonable QSAR model. If the 

value of Q
2
-index is greater than 0.9 the model is an excellent statistical model. 

 Sometimes, the derived statistical equations relative to various 

methodologies may also be compared using the same data set. The comparisons 

may be made based on the results of the regression analysis, the predictive 

capability of the equations generated. The other statistical criteria are AIC [31-32], 

FIT [33-34] and LOF [35-36]. The Akaike’s information criterion AIC, that 

correspond to the total variables,	�′, is given by Equation (1.7) 

 AIC =  
���	.		(�			
�)
(�	–	
�)�            (1.7) 

Those equations having the minimum AIC value are considered as the most useful 

in statistical sense. The Kubinyi function FIT, bearing a resemblance to the F-

value is given for k independent variables by Equation (1.8) 
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 FIT = 
��.		(�	–	�	–	�)
(�			��).(�	–	��)           (1.8) 

The quality of the derived regression equations may be assessed by this 

parameter. The highest value of this parameter is representative of a statistical 

sound model. The number of independent variables (k) decides the sensitivity of 

the F-value. It is more sensitive when k is small and less sensitive when k is large. 

On the other hand, FIT criterion is less sensitive with small numbered changes in k 

values and there is substantial increase in sensitivity as the values of k increases. 

The Friedman’s lack of fit, LOF parameter is given by Equation (1.9) 

 LOF= 
��� �⁄

��	–�	(�	��)� �
�           (1.9) 

In this equation RSS denotes the summation of the squared differences between the 

observed and predicted activities. The smoothing parameter d is accountable for   

the number of terms employed in the equation. This parameter is unbiased 

regarding large numbers of parameters. 

 The derived statistical equations were also subjected to external validation 

test in which a few compounds (nearly 20-30% of the total population), following 

certain criterion, were removed. The removed compounds then form a test set 

while remaining compounds considered together represent the training set. The 

derived regression equation from the training set was further used to predict the 

activity values of the compounds in test set. The close resemblance of such 

predicted activity values to that of observed ones validates the model externally.  

The derived statistical parameter, r
2
test [37], may therefore, ascertain the predictive 

power or external consistency of a generated model. The mathematical expression 

for this parameter is given below: 

r
2

Test= 1 – 
∑(�����( �!")#	�( �!"))�
∑(�( �!")#�$( �%&'&'())�

 (1.10) 

where, YPred(Test) are the predicted activities of the test-set compounds and Y(Test) 

are observed activity values of the test-set compounds. The mean activity value of 

the training-set is represented by )$ (Training). For a predictive QSAR model, the 

value of predicted r
2

Test should be more than 0.5.  

 The parameter r
2
test may not truly reflect the predictive capability of the 

model on a new dataset because it is mainly controlled by sum of squared 
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differences between observed values of test set compounds and mean observed 

activity values of training data set, i.e., a good value of squared correlation 

coefficient (r
2
) between observed and predicted values of the test set compounds 

does not necessarily mean that the predicted values are very near to corresponding 

observed activity.  

Thus, two novel parameters, rp
2
 and rm

2 
have been introduced further to account 

for the acceptability of a predictive QSAR model [38].The modified r
2
, [rm

2
(Test)] 

is given by the Equation (1.11)  

*+(,-./)0
=*0 × (1 − 4*0 + *60	)   (1.11) 

where r0 is squared correlation coefficient between the observed and predicted 

values of the test set compounds with intercept set to zero. The value of this 

parameter should be greater than 0.5 for an acceptable model. Initially, the 

concept of rm
2 

was applied only to the test set prediction [39], but it can as well be 

applied for training set if one considers the correlation between observed and 

LOO predicted values of the training set compounds [40]. More interestingly, this 

can be used for the whole set considering LOO-predicted values for the training 

set and predicted values of the test set compounds. The rm
2
(overall) statistic may 

be used for selection of the best predictive models from among comparable 

models. Another modified parameter is Rp
2
 [41], which penalizes the model R

2
 for 

the difference between squared mean correlation coefficient (Rr
2
) of randomized 

models and squared correlation coefficient (R
2
) of the non-randomized model. 

This parameter may be calculated using following Equation 

780= 70 × (470 + 790	)        (1.12)
 

This parameter ensures that the models thus developed are not obtained by chance 

and the value greater than 0.5 accounts for an acceptable model. 

 Finally, a randomization test [42, 43]  was performed to observe any chance 

correlations coupled to the derived models. The test involves the repeated 

randomization of the biological actions of compounds for each cross-validated 

model. The multiple regression analysis was made to reassess the randomized 

response vector of the datasets, in 100 simulation runs. The counts of the  
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consequential regression equations having correlation coefficients better than or 

equal to the unscrambled activity data was used as a measure of the percent chance 

correlation of the derived model.  

3. QSAR PARAMETERS  

 The most essential feature of a QSAR study requires the representations of 

a substituent/molecule quantitatively in such a manner that it can explain the 

activity induced in a biological system. Generally, such a representation can be of 

physicochemical, theoretical, and structural in nature. The physicochemical model 

of the biological activity that the activity of a compound is a function of three 

separable factors: the electronic, the steric and the solvent partitioning or the 

hydrophobic.  

 The theoretical and/or structural parameter (s) are being used either alone 

or in conjunction or in lieu of physicochemical parameters to quantify the 

molecular features of the series. The overall situation is expressed by Equation 

(1.13) 

BA =  f(electronic)+f(steric)+f(hydrophobic)+ [f(structural)+f(theoretical)]  

         (1.13) 

 There are three major sources of QSAR parameters i) experimenta1 

measurements ii) theoretical estimations and iii) extrapolation from the data base. 

The discussion and the relevant equations defining the different parameters used in 

the Hansch approach are further defined in the sections below.  

 Some of the well-established parameters, being frequently used in QSAR 

studies, are summarized in Table 1.1. 

Table 1.1: Some important QSAR parameters 

Substituent parameter/constant Symbol Reference 

Hydrophobic parameters 

Partition coefficient logP  44-45 

Hydrophobic constant π 44-49 

Hydrophobic constant from liquid-liquid chromatography RM 50 

Elution time in high-pressure liquid chromatography k’ 51 

Solubility δ 52 

Electronic parameters 

Ionization constant pKa 53 
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Hammett constants σ (σm, σp)   54-56 

Distribution constants D 57 

Resonance and Field constants R, F 58 

Steric parameters 

Taft steric parameter Es 59 

Molar refractivity MR 48 

Molar volume MV 60 

Molecular weight MW  

Theoretical parameters 

van der Waals volume Vw 61-64 

Kier’s molecular connectivity indices mχν
 65-68 

Molecular orbital indices 

Charge on an atom Q (Qσ, Qπ)
 69-70 

Nucleophilic & Electrophilic superdelocalizability Sr
N
,  Sr

E
 71 

Electrophilic & Nucleophilic frontier orbital densities fr
N
, fr

E
  72 

Energy of the lowest unoccupied molecular orbital   ELUMO  69-70 

Energy of the highest occupied molecular orbital EHOMO  69-70 

 

3.1. Electronic Parameters  

 The first important definition of an electronic parameter, σ, came in 1935 

when L P Hammett [54] proposed his famous Equation (1.14)  

 δσ = logKX –logKH         (1.14) 

where KH and KX are the ionization constants for unsubstituted benzoic acid and its 

ortho/meta/para derivatives in water at 25°C. δ is the reaction constant, which 

measures the susceptibility of a reaction to polar effects and depends on the nature 

of the reaction including conditions such as reaction medium and temperature. σ 

called the Hammett substitution constant, measures the effect of the substituent on 

K. Positive values of σ represent electron withdrawal by the subsituent from the 

aromatic ring while negative values of σ indicates electron release to the ring. For 

benzoic acids, by definition, σ =1.000 when the measurements are made in water 

in 25°C. Thus σp andσm values can be experimentally determined using pKa values 

for meta/para-substituted benzoic acid in water at 25°C. In fact, the Hammett 

equation states that the electronic effects of the substituents on the ionization of 

benzoic acids can be used as a model for the effects of substituents on other 

reaction centers attached to the aromatic systems. In addition, this parameter may 

also represent effect on the active receptor site by hydrogen bonding and charge-

charge or charge-dipole interactions.   Later on, Swain and Lupton [58] proposed 
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the separation of electronic substituent effect into a field constant, F, and a 

resonance constant, R, as  

 σ = fF + rR         (1.15) 

where f and r are, respectively, the field and the resonance weighting coefficients. 

3.2. Hydrophobic Parameter  

 Of all the parameters, the one that is most important in the quantification of 

BA is the lipophilicity or hydrophobicity. A multiplicity of published QSARs 

would attest this fact. Analogues to the Hammett constant, Hansch school also 

made a significant contribution in estimating the hydrophobic substitution constant 

[44-48], π, from measured partition coefficients, logP data, using the relation 

 πX = logPX – logPH         (1.16) 

In this equation, PX is the partition coefficient of a derivative and PH that of the 

parent compound. A positive value of π implies that relative to H the substituent 

favors the octanol phase and is more hydrophobic in nature while a negative π 

value indicates its hydrophilic character relative to H. Compounds bearing 

hydrophobic substituents are supposed to be more prone to polar interaction with 

the receptor. It has also been showed that 1ogP or π is, to a first approximation, an 

additive property, and also has considerable constitutive character [45].  

3.3. Steric Parameter  

 The first successful numerical definition of steric effect was given by Taft 

[59]. The classic Taft steric constant, Es, is defined by the Equation (1.17)  

 Es = log (KX/KH)          (1.17)  

Where, KX and KH are the acid-catalyzed hydrolysis constants of unsubstitued and 

α-substituted acetates (XCH2COOR) respectively. Es(H) = 0.00 is normally 

standardized to hydrogen. The more positive value of Es indicates the greater steric 

effect affecting intramolecular and intermolecular hindrance to reaction under 

observation.  

3.4. Molar refractivity 

 For many substituents, the experimental Es values may not be available. 

Thus, an alternative theoretical parameter, the molar refractivity [48], MR, is more 

commonly used in QSAR study. It is obtained by the Lorentz-Lorentz Equation 
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which is expressed as  

 MR = (n
2
-1)/(n

2
+2). (MW/d)                         (1.18) 

In above equation, n is the index of refraction at the sodium D line, d, the density, 

and MW, the molecular weight of the compound. Since MR is an additive 

constitutive property of molecules, fragment values for the atoms/structural 

moieties have been calculated and are used to obtain the substitutent’s MR values 

for QSAR studies. Further, the MR having the units of molar volume reflects a 

linear relationship with molecular "bulk". However, this parameter also takes care 

of electronic effect and gives hints towards the dipole-dipole interaction at active 

site of the receptor [62].  

3.5. van der Waals volume 

 Another important substituent parameter, accounting for the size or bulk of 

a molecule or a substituent, is the van der Waals volume, Vw [61]. It is an easily 

computable theoretical parameter which may be calculated for the whole molecule 

or the varying substituents on it. The atoms in a substituent (or in a molecule) are 

assumed to have spherical shapes, as suggested by Bondi [62], to calculate their 

total volume. The necessary corrections for the overlap of atomic orbitals and for 

the branching in hydrocarbon chain are also incorporated [61] to obtain Vw. In a 

number of cases, the parameters, π or logP and Es were shown to be linearly 

correlated with Vw [62-64] which indicates that many times Vw also expresses the 

hydrophobic and steric effects of substituents. In addition, Vw can also take care of 

dispersion interaction or polarizability [61] of the molecules.  

3.6. Molecular connectivity 

 Molecular connectivity [65-68, 74], χ, simply signifies the degree of 

branching or connectivity in a molecule. It is derived from the numerical extent of 

branching or connectivity in the molecular skeleton. The connectivity index has 

several versions. However, the first-order simple connectivity index (
1
χ) and the 

first-order valence connectivity index (
1
χ
v
) are extensively employed in QSAR 

studies. Both are calculated from the hydrogen suppressed graph of the molecule 

and are defined as  

 1
χ=Σ(δiδj)

-1/2
         (1.19) 

                                                  1
χ
v
 =Σ(δ

v
iδ

v
j)

-1/2
         (1.20) 
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where δ is the number of atoms connected to any atom in the graph, and the sum is 

carried over all the connections or edges in such a graph while δ
v
 is defined as  

                                 δ
v
i= (Zi

v
– hi)/(Zi– Zi

v
– 1)                                      (1.21) 

Here Zi
v
is the number of valence electrons, Zi is the atomic number and hi is the 

number of hydrogen atoms attached to i
th

 atom.  

Additionally, where an incident arises, some indicator variables specifying 

the presence or absence (e.g., R or H) or only binary variations (e.g., Me or Ph) of 

a structural representative are also used. Such variables, allow the mixing of 

physicochemical and structural parameters in Hansch type of calculations. 

Numerical values, 1 and 0, are generally used for denoting such structural 

variations. Sometimes, these binary values (1 and 0) are also used for the 

discrimination between the hydrogen-bond donor, HD, or hydrogen-bond 

acceptor, HA, nature of substituents.  

4. DRAGON DESCRIPTORS 

 The DRAGON software [75] has been employed for the parameterization 

of the compounds. This software is able to compute a large number of descriptors 

from different perspectives corresponding to empirical, constitutional and 

topological characteristics of the compounds or their structural fragments under 

multi-descriptor class environment. The first requirement of this software is the 

structures of the compounds. The structures of compounds have drawn in 

ChemDraw [76] and then energy was minimized using the standard procedure.  

Dragon software was used to compute the parameters for these energy minimized 

structures. This software offers a large number of descriptors belonging to 0D-, 

1D-, 2D- and 3D-descriptor classes and these descriptors have been divided into 

20 logical blocks, discussed below. 

Constitutional descriptors 

 Constitutional descriptors (0D) are the simplest and most commonly used 

descriptors. These descriptors provide the information about the compound’s   

molecular composition without considering its molecular geometry [77]. 

Topological descriptors 

 Topological descriptors (1D) are based on the graphical molecular 

representation. Algebraic operators when applied on matrices, which represent H-
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depleted molecular graphs, with values independent of vertex numbering result 

into molecular topology. Thus these descriptors represent the numerically 

quantified molecular topology and able to sensitively address molecular structural 

features not only size, shape, symmetry, branching and cyclicity but also about the 

atom type and bond multiplicity in a molecule [78-106]. 

Walk and path counts 

 These descriptors are obtainable from a H-depleted molecular graph. The 

sequence of pairwise adjacent edges, in a molecular graph that leads from one 

vertex to another one is known as a walk. The number of edges traversed by the 

walk is termed as walk length. An edge has the liberty to traverse many times. 

These descriptors are mainly of three types: 

(i) The molecular walk count order k (MWCk) are the total number of graphical 

walks of a molecule of k
th

 length; 

(ii) The total walk count (TWC) is the total number of graphical walks of any 

length ranging from 0 to 10 and  

(iii) The self-returning walk counts (SRWk) as the name implies self-returning 

walks are the graphical walks with starting and ending on the same vertex. The k
th

 

order SRW is the total number of graphical self-returning walks of length k. [107-

115]. 

Connectivity indices 

 These are molecular descriptors that encode information about size, 

branching, cyclization, unsaturation and heteroatom content in a molecule [116]. 

Information indices 

 These molecular descriptors provide total information about the molecule. 

The information is based on the criteria that are used to define the equivalence 

classes in a molecule. The chemical identity, spatial bonding, molecular topology 

and symmetry may be the one of criteria of equivalency of atoms in a molecule   

[117-119]. 

Edge adjacency indices 

 These are molecular descriptors are calculated from the edge adjacency 

matrix of a molecule. This matrix is obtainable from the H-depleted molecular 

graph having predetermined connectivity between graph edges. It is based on the 
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number of bonds between non-hydrogen atom pairs, B. Therefore, the entries of 

this square symmetric matrix of dimension B×B, are one or zero as the bonds 

considered are adjacent or otherwise, respectively [120-123]. 

2D autocorrelations 

 2D autocorrelations are the spatial autocorrelations calculated on a H-

depleted molecular graph weighted by atom physico-chemical properties (i.e. the 

atom weightings w) and include autocorrelations ATS (i.e. Autocorrelation of a 

Topological Structure) proposed by Moreau and Broto; autocorrelations MATS 

calculated by the Moran coefficient and autocorrelations GATS calculated by the 

Geary coefficient. These are molecular descriptors which describe how a 

considered property is distributed along a topological molecular structure [124-

126]. 

BCUT descriptors  

 These molecular descriptors are helpful in searching similarity or diversity 

in large data bases. The Burden approach is useful to address different facets of 

molecular structure. These descriptors are based on the extension of this approach 

significantly.  These are calculated from a modified adjacency matrix, the Burden 

matrix. The elements of this matrix are derived from the H-included molecular 

graph. The diagonal elements of this matrix are atomic properties and the off-

diagonal elements are the square roots of conventional bond order. The off-

diagonal elements represent pairs of bonded atoms. The other remaining matrix 

elements are set at 0.001. DRAGON provides the first 8 highest eigenvalues 

BEHwk and the first 8 lowest eigenvalues BELwk (absolute values) for each 

matrix, k referring to the eigenvalue rank and w to the atomic properties, namely, 

atomic masses (m), atomic van der Waals volumes (v), atomic Sanderson 

electronegativities (e), and atomic polarizabilities (p) [127, 128]. 

Topological charge indices 

 Topological charge descriptors are derived from an unsymmetric matrix 

CT, whose single elements are defined as 

 CTij= δi if i=j;        (1.22) 

 CTij= mij – mji if i≠j        (1.23) 
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The derivation of these equations is based on the H-depleted molecular graph. The 

number of connected atoms in this graph represents the vertex degree of the i
th 

atom i.e. δi . The result of the multiplication of the adjacency matrix by the 

reciprocal square distance matrix, are the elements of the matrix, mij. The 

topological valence of the atoms is considered as the diagonal entries of the CT 

matrix. The measure of the net charge transferred from the atom j to the atom i has 

been represented through the off-diagonal entries CTij [129]. 

Eigenvalue-based indices 

 These molecular descriptors are calculated as a selected eigenvalue or 

function of the eigenvalues of a square matrix representing a H-depleted 

molecular graph [85, 130, 131]. 

Randic molecular profiles 

 Molecular profiles are sequences of molecular descriptors, proposed by 

Randic, and derived from the interatomic geometric distances of a molecule. 

DRAGON provides two molecular profiles. One is much more related to the 

global molecular 3D structure: DPk and the other to the molecular shape: SPk. 

Each descriptor DPk in the DP profile is calculated as 

 DPk =
�
�!
∑ ∑ �<=��>?

=@�
�>?
<@�

�AB         (1.24) 

where rij is the geometric distance between atoms i and j, nAT the number of 

molecule atoms and k the descriptor order (k = 1, ... , 20). The effect of the 

factorial normalization factor diminishes at higher values of k and DP values tend 

to zero. Each descriptor SPk of the shape profile is calculated in the same way as 

the DP descriptors, but taking into account only atoms on molecular periphery 

(i.e., atoms with H-depleted connectivity equal to 1 or 2). Randic molecular 

profile is characteristic of a molecule and thus these are particularly suitable to 

molecule similarity/diversity analysis [132-134]. 

Geometrical descriptors 

 Geometrical descriptors are derived from the 3 dimensional structure of 

the molecule. An optimized molecular geometry is necessary to calculate these 

descriptors which may be obtained by computational chemistry or 

crystallography. Since a geometrical representation of a molecule involves the 

knowledge of the relative positions of the atoms in 3D space, i. e., the (x,y,z) 
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atomic coordinates of the molecule atoms, geometrical descriptors usually provide 

more information and discrimination power, also for similar molecular structures 

and molecule conformations, than topological descriptors. Being calculated on the 

graph representation of molecules many geometrical descriptors are commonly 

known as topographic indices, instead of using the geometric distances between 

atoms [77]. 

RDF descriptors 

 The recently proposed RDF (Radial Distribution Function) descriptors 

have their origin in radial distribution function. These functions may be treated as 

the probability distribution function to find out an atom in a spherical volume of 

radius R. The general form of the radial distribution function, calculated at a 

number of discrete points with predefined intervals, is represented below by 

RDFRw. 

RDFRw= C. ∑ ∑ DE . DF�AB
F#E	�

�AB#�
E#� . G#H(�#�<=)�        (1.25) 

where f is a scaling factor (assumed equal to one in the calculations), w is 

characteristic property of the atoms i and j, rij is the interatomic distance and nAT 

is the number of atoms in the molecule. The exponential term contains the 

interatomic distance rij and the smoothing parameter β (Å
–2

), which defines the 

probability distribution of the individual interatomic distance; β can be interpreted 

as a temperature factor that defines the movement of atoms [135-148]. 

3D-MoRSE descriptors 

 The descriptors, 3D-MoRSE (3D-Molecule Representation of Structures 

based on Electron diffraction) are based on the idea of obtaining information from 

the 3D atomic coordinates by the transformation used in electron diffraction 

studies for preparing theoretical scattering curves [149]. 

WHIM descriptors 

 Weighted Holistic Invariant Molecular (WHIM) descriptors are 

geometrical descriptors based on statistical indices calculated on the projections of 

the atoms along principal axes. These are divided mainly into two classes: 

directional and global WHIM descriptors. All WHIM descriptors are built in such 

a way as to capture relevant molecular 3D information regarding molecular size, 
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shape, symmetry and atom distribution with respect to invariant reference frames 

[150-151].  

GETAWAY descriptors  

 GEometry, Topology, and Atom-Weights AssemblY (GETAWAY) 

descriptors have recently been proposed as chemical structure descriptors, derived 

from a new representation, the Molecular Influence Matrix (MIM).The molecular 

information matrix is a symmetric matrix and shows rotational invariance with 

respect to the molecular coordinates, thus independent of molecule alignment 

[152, 153]. 

Functional group counts 

 These are simple molecular descriptors defined as the number of specific 

functional groups in a molecule. They are calculated by knowing the molecular 

composition and atom connectivities as the same functional group belongs to an 

aliphatic or an aromatic molecular fragment [77]. 

Atom-centred fragments 

 These are simple molecular descriptors known as atom-centred fragments 

and defined as the number of specific atom types in a molecule. They are 

calculated by knowing the molecular composition and atom connectivities. Each 

atom type is an atom in the molecule described by its neighboring atoms. 

Hydrogen and halogen atoms are classified by the hybridization and oxidation 

state of the carbon atom to which they are bonded; for hydrogen, hetero-atoms 

attached to a carbon atom in α-position are further considered. Carbon atoms are 

classified by their hybridization state and depending on whether their neighbors 

are carbon or hetero-atoms [155]. 

Charge descriptors 

 These are electronic descriptors defined in terms of atomic charges and 

used to describe electronic aspects both of the whole molecule and of particular 

regions, such as atoms, bonds, molecular fragments etc. [156-158]. 

Molecular properties 

 These are 1D-descriptors, representing molecular properties of a molecule 

such as molar refractivity, fragment based polar surface area and octanol-water 

partition coefficient [77]. These are calculated for entire structure of a molecule. 
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 The important descriptor classes from above twenty logical blocks have 

further been discussed in the follow up section: QSAR modeling. 

5. QSAR MODELING IN PRESENT WORK 

 QSAR modeling is a stepwise process involving following main steps: 

 5.1 Structure entry and energy optimization 

 5.2 Descriptor calculations 

 5.3 Feature selection 

 5.4 Model development  

 5.5 Y-Randomization 

 5.6 Prediction, validation and interpretation 

5.7 Applicability domain 

5.1. Structure entry and energy optimization 

 The molecules to be used in the study can be available as 2D- or 3D- 

structures. The structures of the compounds under investigation are drawn in 2D 

ChemDraw [76] using standard procedure. The drawn structures are then 

converted into 3D modules using the default conversion procedure implemented 

in the CS Chem 3D Ultra. The generated 3D-structures of the compounds were 

subsequently subjected to energy minimization in the MOPAC module, using the 

AM1 procedure for the closed shell systems, implemented in the CS Chem 3D 

Ultra. This was done to bring all molecules at common minimum energy level and 

to ensure a well defined conformer relationship across the compounds under 

study. 

5.2. Descriptor calculations 

 As mentioned previously, the fundamental assumption of QSAR modeling 

is that molecular structure may be visualized in terms of physical or biological 

properties. Thus the essential requirement is to have some method which may 

encode various structural features of a molecule. The encoding of structural 

features may be achieved through the calculation of molecular descriptors which 

are obtained as their numerical representations. Such features can range from very 

simple ones such as the number of carbons or number of halogen atoms etc. to 

more complex and abstract features. The DRAGON software [75] has been 

employed for the parameterization of the molecules under investigation. This 
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software is able to evaluate several hundreds of descriptors from different 

perspectives corresponding to empirical, constitutional, and topological 

characteristics of the compounds or their structural fragments under multi-

descriptor class environment.  

 The energy minimized structures of respective compounds have been 

ported to DRAGON software for computing the parameters corresponding to 0D-, 

1D-, 2D- and 3D-descriptor classes. For most of the present work, the descriptors 

corresponding to 0D-, 1D- and 2D-classes have been computed and used for 

correlation purposes as the physical interpretation of parameters from these 

classes is simpler compared to the descriptors of 3D-class. However, 3D-

descriptors have also been employed to obtain QSAR rationales. 

 A brief description about the definition and scope of 0D-, 1D- and 2D-

classes in modeling the biological actions of compounds under study is given in 

Table 1.2. 

Table 1.2: Descriptor classes used for modeling the biological actions 

S. 

No. 

Descriptor class 

(acronyms)
a
 

Definition and scope 

1 Constitutional 

(CONST) 

Dimensionless or 0D descriptors; independent 

from molecular connectivity and 

conformations 

2 Topological (TOPO) 2D-descriptor from molecular graphs and 

independent conformations 

3 Molecular walk counts 

(MWC) 

 

2D-descriptors representing self-returning 

walks counts of different lengths 

 

4 Modified Burden 

eigenvalues (BCUT) 

2D-descriptors representing positive and 

negative eigenvalues of the adjacency  matrix, 

weights the diagonal elements and atoms 

5 Galvez topological 

Charge indices (GVZ) 

2D-descriptors representing the first 10 

eigenvalues of corrected adjacency matrix 

 

6 2D-autocorrelations 

(2D-AUTO) 

Molecular descriptors calculated from the 

molecular graphs by summing the products of 
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atom weights of the terminal atoms of all the 

paths of the considered path length (the lag) 

7 Functional groups 

(FUNC) 

Molecular descriptors based on the counting 

of the chemical functional groups 

 

8 Atom centered 

fragments (ACF) 

 

Molecular descriptors based on the counting 

of 120 atom centered fragments, as defined by 

Ghose-Crippen 

9 Empirical (EMP) 

 

 

 

1D-descriptors represent the counts of non-

single bonds, hydrophilic groups and ratio of 

the number of aromatic bonds and total bonds 

in an H-depleted molecule 

10 Properties (PROP) 

 

1D-descriptors representing molecular 

properties of a molecule 
a
Reference [77].  

5.3. Feature selection 

 The web version of DRAGON software is able to evaluate 1497 molecular 

descriptors distributed into eighteen classes covering twenty logical blocks, 

discussed previously. It is apparent that in such a large descriptor pool a number 

of descriptors will be highly correlated with other descriptors or else may have the 

same value for all the molecules and will thus contain no relevant information. 

Thus prior to their use for model development, the original descriptor pool must 

be reduced in size by selecting only those descriptors which are information rich 

and relevant. Such descriptors, in subsequent effort, may only be considered for 

the development of statistical significant models. 

5.4. Model development  

 Once the descriptors have been calculated and reduced the original pool to 

a more manageable size the next step is to proceed for building a set of models 

and choose the best one. The recently developed software [27, 159-160], namely 

the Combinatorial Protocol in Multiple Linear Regression (CP-MLR) analysis has 

been used successfully to achieve the same. The strategy followed in CP-MLR 

approach is presented below. 
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Combinatorial Protocol in Multiple Linear Regression 

 The CP-MLR is a ‘filter’ based variable selection procedure for model 

development in QSAR. The thrust of this procedure is in its embedded ‘filters’ 

which are briefly as follows:  

Filter-1: seeds the variables by way of limiting inter-parameter correlations 

to predefined cutoff level (default acceptable value ≤ 0.3); 

Filter-2:  controls the variables entry to a regression equation through t-

values of coefficients (default acceptable value ≥ 2.0); 

Filter-3:  provides comparability of equations with different number of 

variable in terms of square-root of adjusted multiple correlation coefficient of 

regression equation, r-bar (for ‘baseline model’ the minimum value is 0.71); and 

Filter-4: estimates the external consistency of the equation in terms of cross-

validated R
2
 or Q

2
 with leave-one-out (LOO) cross- validation as default option 

(default acceptable limits are 0.3 ≤ Q
2 
≤ 1.0).  

 The filter-2 evaluates the significance of variables of each seed in terms of 

the t-values of regression coefficients. It involves a comparison of estimated 

regression coefficients of the variables and their standard errors; the seed is 

skipped if the ratio is below the threshold value. Successive additions of variables 

to multiple regression equation will increase successive multiple correlation 

coefficient values. In light of this, filter-3 (r-bar value) compensates the increment 

in correlation coefficient due to the increasing number of explanatory variables in 

seeds and allows the comparison of different seeds.  

 The flow chart in Figure 1.2 has demonstrated the strategy for the 

identification of information rich descriptors corresponding to the phenomenon, 

the biological activity, under investigation.  

 This has three stages in it: The first stage sorts the descriptor classes into 

different categories depending on their ability to form any model to explain the 

variance in the activity. The second stage collates the information rich descriptor 

classes to select the individual descriptors significant to the activity. The last stage 

reuses the selected individual descriptors to discover higher models and/or to 

explain the phenomenon in a comprehensive manner.  

 



23 

 

 In this process, the first stage has been developed based on the philosophy 

of elimination through selection. This has three iterations in it. It has been devised 

to address the multiple descriptor classes’ environment in high dimensional 

modeling studies. It operates by way of categorized treatment of descriptor 

classes. In this the contributing descriptor classes will be identified using simple 

models called ‘baseline models’. Here, a baseline model represents any entry-level 

cross-validated regression equation with minimum variables (for example one-to 

three- descriptors) and capable of explaining at least 50% of variance in the 

dependent variable. This has been considered with the view that among multi-

descriptor models, the two- or at the most three-descriptor equations are the 

simplest to understand and explain the chosen phenomenon. Also, at this stage the 

level of importance of the descriptors to the phenomenon of study can be seen 

clearly.  

Moreover, the ‘baseline model’ concept helps in efficiently handling a 

large number of variables in each descriptor class and in identifying the 

information rich descriptors of all classes corresponding to the phenomenon. For 

the identification of the baseline models, the CP-MLR – a ‘filter’ based variable 

selection procedure for model development – has been used in its simplest form 

with predefined filter thresholds as discussed above. In the first iteration the data 

files corresponding to each individual descriptor class will be evaluated separately 

for their ability to form a baseline model and accordingly they will be classified as 

the primary contributors (category I) and the residual descriptor classes (leftover 

group).  

The second iteration is meant for identifying the collective information 

content of the leftover descriptor classes´ vis-à-vis the activity under study. In this, 

the leftover descriptor classes of the first iteration have been merged and recycled 

for their ‘collective’ influence in evolving the baseline models. Accordingly, the 

residual descriptor classes have been classified as the ‘collective’ contributors 

(category II) and the leftover of second iteration. At the end of second iteration, if 

no descriptor class is selected under the categories II and I, the process have been 

terminated to redefine the filters’ threshold in CP-MLR for new baseline models 

to facilitate the capture of the descriptor class. 



24 

 

 

Figure 1.2: Procedure of the model(s) development strategy. It is embedded with 

Combinatorial Protocol in Multiple Linear Regression (CP-MLR) and shows the 

progress of selection of descriptors classes into categories I, II and III (CI, CII, 

CIII) and leftovers I, II and III (LI, LII, LIII) (1
st
 stage), individual descriptors (2

nd
 

stage) and final structure-activity models (3
rd

 stage). In this ‘Y’ stands for ‘yes’ 

and ‘N’ stands for ‘no’. In each stage the CP-MLR has been used for distinct 

function namely categorisation of descriptors classes, sieving contributing 

descriptors from the identified descriptor categories and finally identifying higher 

models and descriptors involved therein. 

 However, if no descriptor class is selected under the category I alone, then 

the leftovers, if any, of the second iteration were excluded from the study by 

treating them as noncontributing descriptor classes and the process continued with 

the second stage of the flowchart. Otherwise, the leftovers of the second iteration 

have been carried forward to the next generation iteration to examine their 

possibility of making a ‘secondary’ contribution in association with the primary 

descriptor classes (category I). In this way, the third iteration classifies the 
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corresponding descriptor classes as the ‘secondary’ contributors (category III) and 

the non-contributing descriptor classes, which were excluded from the study from 

this point onward.  

 On identifying the contributing descriptor classes in the form of categories 

I, II, and/ or III, the process continues in the second stage with the collated 

descriptor classes to create all possible baseline models that could possibly 

emerge from them. These models give out the individual contributing descriptors 

across the categories.  The identified individual descriptors have been recycled in 

the last stage for higher models and comprehensive diagnosis of the phenomenon. 

5.5. Y-Randomization 

 All the models identified in the last stage have been further put to a 

randomization test [161, 162] by repeated randomization of the activity to 

discover the chance correlations, if any, associated with them. For this every 

model has been subjected to 100 simulation runs with scrambled activity. The 

scrambled activity models with regression statistics better than or equal to that of 

the original activity model have been counted to express the percent chance 

correlation of the model under scrutiny. 

5.6. Prediction, validation and interpretation 

 Validation of the derived model is necessary to test its prediction and 

generalization within the study domain. The data set is randomly divided into 

training set for model development and test set for external prediction. For each 

model, besides the statistical parameters R, s and F-ratio, the other indices such as 

the cross- validated Q
2

LOO (leave-one-out) and Q
2

L5O (leave-five-out) have also 

been computed. Additional statistical parameters such as the Akaike´s information 

criterion, AIC [31, 32] the Kubinyi function, FIT [33, 34] and the Friedman’s lack 

of fit, LOF [35], have also been calculated to further validate the derived models. 

In case of internal validation, cross validated Q
2

LOO and Q
2

L5O have been used to 

ascertain the robustness and predictive ability of the derived model.  

5.7. Applicability domain  

 The usefulness of a model is based on its accurate prediction ability for 

new congeners. A model is valid only within its training domain and new 

compounds must be assessed as belonging to the domain before the model is 
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applied. The applicability domain is the physicochemical, structural or biological 

information on which training set of the model has been developed and for which 

it is applicable to make predictions for the new compounds. This domain is 

evaluated by the leverage values for each compound [163]. A Williams plot [the 

plot of standardized residuals versus leverage values, h] is constructed which can 

be used for a simple graphical detection of both the response outliers (Y outliers) 

and structurally influential chemicals (X outliers) in the model. In this plot, the 

applicability domain is established inside a squared area within ± x times the 

standard deviations and a leverage threshold h*which is generally fixed at 3(k + 

1)/n (n is the number of training set compounds and k is the number of model 

parameters) whereas x = 2 or 3. If the compounds have a high leverage value 

(h>h*) then the prediction is not trustworthy. On the other hand, when the 

leverage value of a compound is lower than the threshold value, the probability of 

accordance between predicted and observed values is as high as that for the 

training set compounds.  

 At this point we have in hand a validated model with good predictive 

ability. The important feature of the model is that it should have incorporated one 

or more structure activity relationships. The final task of a QSAR modeling 

methodology is to interpret the model to describe these relationships.  

 The interpretation of a linear model may also utilizes the PLS technique 

which dissect the effects of individual descriptors on the dataset and allows a very 

detailed description of any structure activity relationship captured by the model. A 

brief description of the PLS technique is provided below. 

6. PARTIAL LEAST SQUARE REGRESSION  

 Partial Least Squares (PLS) regression technique finds a linear regression 

model by projecting the predicted variables and the observed variables to a new 

space which  is especially useful in quite common case where the number of 

descriptors (independent variables) is comparable to or greater than the number of 

compounds (data points). PLS approach leads to stable, correct and highly 

predictive models even for correlated descriptors instead of the solution of 

classical least squares problem which does not exist or unstable and unreliable 

[164-166]. Partial Least Squares regression is based on linear transition from a 
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large number of original descriptors to a new variable space based on small 

number of orthogonal factors (latent variables).  Latent variables are chosen in 

such a way as to provide maximum correlation with dependent variable; thus, PLS 

model contains the smallest necessary number of factors. With increasing number 

of factors, PLS model converges to ordinary multiple linear regression models. In 

addition, PLS approach allows one to detect relationship between activity and 

descriptors even if key descriptors have little contribution to the first few principal 

components [167-169]. 

 A PLS model will try to find the multidimensional direction in the X space 

that explains the maximum multidimensional variance direction in the Y space. 

Here the X- and Y-scores are selected so that the relationship between successive 

pairs of scores is as strong as possible. In principle, this is like a robust form of 

redundancy analysis, seeking directions in the factor space that are associated with 

high variation in the responses but biasing them toward directions that are 

accurately predicted [165]. 

 In principle, the PLS components are extracted from relatively large 

number of descriptors, the obtained PLS regression models are sensitive to the 

noise due to the excessive irrelevant descriptors. Thus variable selection 

procedures have been applied to refine the performance of PLS models. In this 

procedure the information rich descriptors corresponds to the biological activity 

are selected by variable selection algorithm, i.e., CP-MLR that can integrate the 

meaningful variables or to eliminate the redundant variables in final PLS model. 

 For optimum selection of meaningful variables a new approach Variance 

Inflation Factor (VIF) can also be used, which is a potent method of detecting the 

severity of multicollinearity [170-171].  VIF can easily be calculated as: 

    VIF = 
�

�#��                  (1.26) 

    Tolerance = 
�
IJK                 (1.27) 

When VIF value is higher than 5 or tolerance remains under 0.20 then 

multicollinearity among the descriptors exists. For continuation of process one 

variable can be selected while others can be left aside from a set of multicollinear 

variables. The significance of normalized PLS regression coefficients of the 

descriptors coupled with different statistical measures have also been used to 
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identify the redundancy in the variables [170]. Thus, the PLS approach is useful in 

retaining the descriptors with high explanatory/ predictive power in the final 

models. 

 Thus, QSAR has great potential for modeling and designing novel 

congeners enable to forecast biological activities as a function of structural 

features and or physicochemical properties.  Following the successful utilization 

of linear free-energy relationships, numerous 2D- and 3D-QSAR methods have 

been developed, most of them based on descriptors for hydrophobicity, 

polarizability, ionic interactions and hydrogen bonding. QSAR models used for 

the prediction of biological activity (or toxicity), as well as the evaluation of 

absorption, distribution, metabolism, and excretion. It has a particular interest in 

the preclinical stages of drug discovery to replace tedious and costly 

experimentation, to filter large chemical databases, and to select a few drug 

candidates. By quantifying physicochemical properties, it is possible to predict the 

biological activities of novel analogues prior to their synthesis. The main 

advantages of QSAR study are: 

• it allows the medicinal chemist to target efforts on analogues which should 

have improved activity and thus cut down the number of analogues which have to 

be made.  

• if an analogue is discovered which does not fit the model equation, it suggests 

that some other feature is important and offers a lead for further development. 

 Furthermore, the methodology is not dependent on the original dataset. All 

that is required is the availability of the original residuals. Another attractive 

feature is that apart from the threshold residual value, the methodology does not 

require extra information such as similarity measures or new descriptors, since it 

restricts itself to using the descriptors that were used in the original quantitative 

model. Thus, the study has reached to a stage where it can be used as an 

alternative for both lead identification and optimization. It provides powerful tool 

for virtual screening and can accompaniment well with the current techniques of 

combinatorial chemistry and high throughput screening in drug discovery 

research. 
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CHAPTER 2 

ANTIDIABETIC AGENTS: AN OVERVIEW 

1. INTRODUCTION 

 β-Cells secrete insulin in islets of Langerhans as a response to elevated blood 

glucose. A severe increase in blood glucose induces a rapid release of insulin which is 

sustained for a short period (known as first phase) and then followed by longer period 

of lower secretion (the second phase)) which accounts for the most part of secretion 

of insulin. Diabetes and its complications are the outcomes of progressive reduction 

in β-cell mass or secretory capacity resulting to abnormal glucose metabolism. 

Diabetes mellitus (DM) is a major health concern all over the world [172]. Due to 

globalization, mechanization, and changes in human lifestyle and daily routines 

incidences of diabetes and obesity are continuously increasing [173]. As per the 

estimate of International Diabetes Federation (IDF), the diabetic population of age 

group 18-99 years was 451 million and this figure is supposed to be 693 million by 

2045 [174]. Diabetes is a metabolic disorder which is characterized by hyperglycemia 

in a fasted or a fed state. This metabolic disorder is a result of defects in insulin 

action, insulin secretion, or both, which leads to persistent hyperglycemia [175]. 

When blood glucose is >130 mg/dl the risk of diabetes increases [176]. 

Autoimmunity or destruction of insulin-secreting pancreatic β-cells, insulin 

resistance, obesity, genetic polymorphism, ketoacidosis, sedentary lifestyle and 

improper diet are the primary causes of diabetes and other causes are enzymatic 

defects including incretin, dipeptidyl peptidase VI (DPP-VI), peroxisome proliferator 

activating receptors (PPARs) [177-179].  

2. CLASSIFICATION OF DIABETES 

 Diabetes may be classified, on the basis of insulin deficiency, into the 

following types: 

(i) Insulin Dependent Diabetes Mellitus (IDDM)  

 It is a result of cellular mediated autoimmune destruction of the pancreatic 

cells. It is also known as type 1 diabetes or juvenile onset diabetes because usually 
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occurs in children or young adults and accounts for 5-10% of patients. To control the 

glucose level in blood, regular supply of insulin injections is desired. The rate of β- 

cell destruction varies in infants and children, and in adults. The degeneration of β- 

cells is slower in adults whereas the deterioration of these in infants and children is 

rapid. As a result of it symptoms like ketoacidosis occur in children and young ones 

whereas in other individuals modest fasting hyperglycemia is exhibited which in 

response to stress or infection may change to severe hyperglycemia or ketoacidosis. 

Such patients are susceptible to higher risk for development of other autoimmune 

disorders such as Grave’s disease, vitiligo, celiac sprue, autoimmune hepatitis, 

myasthenia gravis, Hashimoto’s thyroiditis, Addison’s disease and pernicious anemia 

[180]. This type of diabetes is common in people of African and Asian descent and 

hereditary pattern is followed [181].  

(ii) Idiopathic Diabetes  

 A small number of type 1 diabetes patients having no etiologies are prone to 

ketoacidosis and have permanent insulinopenia. The occurrence of ketoacidosis takes 

places in episodes and the insulin deficiency level fluctuates between episodes. The 

idiopathic diabetes has genetic predisposition and insulin replacement therapy is 

absolutely needed depending on the condition of the patient [180]. 

(iii) Noninsulin Dependent Diabetes Mellitus (NIDDM)  

 It accounts for nearly 90-95% of all diabetes and also known as adult onset 

diabetes. Obesity, insulin resistance, and dyslipidaemia are the major metabolic 

syndromes which led to the epidemic of type 2 diabetes [182]. Oral hypoglycemic 

drugs are used for the treatment of this type of diabetes which is dietary in nature. 

Insulin resistance and loss of insulin secretion are contributory to the inception of 

disease. In developed countries, type 2 diabetes mellitus, the most common form of 

diabetes, is the fourth leading cause of death with a twofold excess mortality and two- 

to fourfold increased risk of coronary heart disease and stroke [183]. 

(iv) Gestational Diabetes Mellitus (GDM)  

 It was first diagnosed during pregnancy [184] and related to glucose 

intolerance resulting variable severity of hyperglycaemia [185]. The impaired glucose 
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intolerance, GDM, affecting nearly 14% women during pregnancy in the United 

States and is a major risk factor for type 2 diabetes in mothers [186]. The extent of the 

reported risk varies with the variations in ethnicity, selection criteria and tests for 

GDM and type 2 diabetes [187]. Respiratory distress syndrome, neonatal 

hypoglycemia and fetal macrosomia may be developed in gestational diabetes leading 

to increased rates of birth trauma, shoulder dystocia, and cesarean delivery. Such 

maternal and fetal complications may be decreased by adequate glycemic control in a 

strategic manner. The blood sugar in patients with gestational diabetes may 

successfully be controlled by diet, exercise, oral diabetes medication or insulin.  

(v) Catamenial Hyperglycaemia 

 Inadequate insulin or poor insulin compliance, acute pancreatitis, stroke, 

drugs, metabolic disturbances within the body, negligence with the treatment and 

infection may lead to conditions of diabetic ketoacidosis ((DKA) [188].  The 

occurring of the uncontrolled hyperglycaemia with DKA before the menstrual cycle 

is called as catamenial diabetic ketoacidosis or catamenial hyperglycaemia. The 

requirement of insulin increases because of uncontrolled hyperglycemia. The 

condition is so aggravated that even after the continuous insulin infusion, resulting in 

vomiting, and leading to significant acidosis, ketonuria and hyperglycaemia. It is the 

strange fact that several tests including inflammatory markers, blood count renal 

function, electrocardiogram and chest radiograph, thyroid function and urine and 

blood cultures were all found to be normal in other words the conditions which lead 

to catamenial hyperglycaemia remained undiagnosed [189]. Hormonal changes 

altogether with changes in diet and exercise levels occurred during menstrual cycle 

may play a significant role [190]. To avoid any diabetic emergencies, the right 

medication strategy for the treatment of catamenial diabetic ketoacidosis is the 

increased insulin infusion dosage with effective diet and exercise plans [191]. 

 Type 1 and type 2 diabetes are more common types of diabetes. Risk of 

developing T2DM is associated with the alteration in glucose metabolism. The risk 

factors in the development of insulin resistance, loss of pancreatic function, 

worsening of hyperglycemia and progression to diabetes are excess adiposity, 
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inflammation and dyslipidemia [192]. Not only type 2 diabetics but prediabetics 

(presently defined as moderately elevated fasting blood glucose, FBG) also are at 

increased risk for a wide range of debilitating diseases. Diabetes emerged as the 

leading cause of kidney failure, blindness and of nontraumatic lower limb 

amputation. The multitude of cardiovascular disease (CVD) is 2 to 4 times higher in 

diabetics [193].  

 The accumulation of fat in hepatocytes (steatosis) which leads to the chronic 

liver disorder Non-Alcoholic Fatty Liver Disease (NAFLD) and its more advanced 

form, Non-Alcoholic Steato-Hepatitis (NASH) is the potential fatal complication of 

T2DM. The addressing of these serious complications of T2DM is important as 

NAFLD/NASH can progress to hepatitis, cirrhosis, and even liver cancer. The current 

glucose-lowering treatments are beneficial but the disease related morbidity and 

mortality remained considerable in patients having T2DM. 

 Thus there is ardent desire of innovative medications which target the multiple 

metabolic abnormalities, inflammatory processes and other pathways predisposing to 

diabetes-associated disorders.  

 The prevention of long-term complications and the treatment of associated 

disorders such as NAFLD/NASH and CVD are the challenges in the management of 

T2DM disease. The association between the degree of hyperglycemia and the risk of 

micro- and macrovascular complications including fatal CVD events has shown in 

T2DM prospective studies.  

 The ACCORD and ADVANCE trials in patients with longstanding T2DM 

revealed that aggressive glucose control in such patients has no clear benefits, or even 

may increase CVD events [194] suggesting the existence of other independent risk 

factors which contribute significantly to CVD risk in T2DM patients. These findings 

reflect upon the limitations of current anti-diabetic therapies, because the off-target 

effects countered the potential benefits of glucose lowering. New therapeutics must 

be aimed at to treat diabetic patients at an earlier stage of the disease and able to 

address the multi-factorial nature of T2DM.  
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3. CURRENT AND FUTURE THERAPEUTIC APPROACHES 

 Metformin (suppressor of hepatic glucose production), sulfonylureas (insulin 

secretagogues) and thiazolidinedione pioglitazone, (PPAR agonist) are being used at 

present as the widespread treatments for T2DM. Glucagon-like peptide-1 (GLP-1) 

mimetics and inhibitors of the enzyme that degrades GLP-1 (dipeptidyl peptidase-4, 

DPP-4) are being employed in the incretin-based treatment strategies. GLP-1 

promotes satiety and weight loss. This intestinally-derived peptide stimulates insulin 

as a response to food intake and reduces the rate of gastric emptying. Exenatide, the 

GLP-1 mimetic, was approved by the FDA in 2005 and its indication was extended in 

2009 to standalone therapy for T2DM. However, a certain number of gastrointestinal 

side-effects persist with the exenatide. It showed a reduced incidence of 

cardiovascular events in a retrospective analysis of almost 40,000 patients [195]. 

Novel therapeutic approaches in the area of T2DM drug discovery are specifically 

designed keeping in mind the multi-factorial nature of T2DM by targeting multiple 

diabetes-related indications and should not be focused simply on the glucose-

lowering.  

 Current FDA recommendations, because of the elevated CVD risk in T2DM, 

require that all new anti-diabetic drugs show exemplary cardiovascular safety 

profiles. In this way, drugs that target molecular pathways having potential 

implications in both diabetes and CVD are especially desirable. The targeting of 11β-

hydroxysteroid dehydrogenase type 1 (11β-HSD1), GPR119, TGR5, sirtuin 1 

(SIRT1), the sodium-glucose co-transporter 2 (SGLT2) and GPR40 are examples of 

such approaches.  The rationale of each is briefly described below- 

3.1. THE 11ββββ-HYDROXYSTEROID DEHYDROGENASE TYPE 1 (11ββββ-HSD1)  

 Glucocorticoids are steroid hormones which bind to the glucocorticoid 

receptor (GR) and exert powerful anti-inflammatory and immunosuppressive effects. 

The treatment of patients with glucocorticoids develops obesity, insulin resistance, 

glucose intolerance and dyslipidemia [196]. In the USA, more than 2.5 million people 

are exposed to long-term glucocorticoids [197] and the insulin resistance due to 

glucocorticoid exposure became a public health problem. Tissue-specific metabolism 
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of glucocorticoids is catalyzed by two enzymes, one is 11β-hydroxysteroid 

dehydrogenases type 1 (11β-HSD1) and the other is type 2 (11β-HSD2). The inter-

conversion of non-receptor binding cortisone and the receptor binding active form, 

cortisol is carried out by these enzymes. Inactive cortisone in the liver, adipose tissue, 

vasculature and brain is converted to the active cortisol by the NADP(H)-dependent 

enzyme 11β-HSD1 [198-200]. On the other hand, the NAD-dependent 

dehydrogenase, 11β-HSD2, inactivates cortisol to cortisone in the kidney and colon 

[201]. A well established role of 11β-HSD1 in obesity and metabolic disease in 

rodents is observed. The adipose tissue-specific aP2 promoter, driven overexpressed 

11β-HSD1 showed elevated corticosterone levels in adipose tissue which displayed a 

phenotype mimicking human metabolic syndrome and that was characterized by 

visceral obesity, insulin resistance, and hyperlipidemia [202, 203]. A study revealed 

that administration of glucocorticoids in mice induces metabolic syndrome which was 

prevented in 11β-HSD1 knockout mice [204]. These findings in addition to tissue-

specific expression of 11β-HSD1 implied that the intracellular metabolism of 

glucocorticoids by 11β-HSD1 is critical to the development of insulin resistance 

rather than the circulating glucocorticoids. In the treatment of a variety of diseases, 

11β-HSD1 emerged as an important therapeutic target for reducing adverse effects of 

prescribed glucocorticoids. 

 The mechanism of insulin resistance with the increased levels of 11β-HSD1 is 

not fully clear. In adipose tissue, the increased levels of leptin, resistin, tumor 

necrosis factor-α (TNF-α) and interleukin-6 (IL-6) by the overexpression of 11β -

HSD1 gene [205, 206] suggested that high local levels of glucocorticoids promote an 

inflammatory activity through cortisol. The inflammatory function, exerted by 

glucocorticoids may be regulated through a central player in the insulin signaling in 

diabetes and insulin resistance that is c-Jun N-terminal kinases (JNK). Findings 

showed that JNK knockout mice are protected against the development of insulin 

resistance [207, 208] and in insulin-resistant rodents, the administration of small 

molecule or peptide inhibitors of JNK significantly improved insulin sensitivity [209, 

210]. JNK can be activated by multiple factors including inflammatory cytokines and 
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free fatty acids. Based on the fact that the increased JNK activity in epithelial cells 

[211], hippocampal cells [212] and endothelial cells [213] by glucocorticoids, a study 

using a high fat diet (HFD) mouse model and cultured adipocytes indicated that 

glucocorticoid-induced insulin resistance was dependent on 11β-HSD1 and resulted 

in the critical activation of JNK signaling in adipocytes [214].  

 The mechanism of insulin resistance mediated by 11β-HSD1 is depicted in the 

Figure 2.1.  
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Figure 2.1: Mechanism of insulin resistance mediated by 11β-HSD1. 11β-HSD1 

converts inactive glucocorticoid into active glucocorticoid in adipocytes. The JNK 

pathway is activated by active glucocorticoid-GR signaling complex and JNK inhibits 

insulin-induced Akt phosphorylation leading to insulin resistance. Inflammatory 

cytokines such as tumor necrosis factor-α (TNF-α) may also activate JNK. GCs, GR, 

IR and JNK represent glucocorticoids, glucocorticoid receptor, insulin receptor and c-

Jun N-terminal kinase, respectively. PF00915275 and C66 are specific small-

molecule inhibitors of 11β-HSD1 and JNK, respectively.   
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 It is expected that 11β-HSD1 inhibitors may address several metabolic 

syndrome related aspects.The glucocorticoid receptor on excessive activation can 

generate multiple clinical features such as insulin resistant diabetes, obesity, 

dyslipidemia and hypertension that are characteristic of the metabolic syndrome. 11β-

HSD1 locally generates the active glucocorticoid cortisol from cortisone under 

normal cellular activity thus there is a notion that specific inhibitors have potential in 

improving above mentioned conditions [215-221].  

 Studies reported that inhibition of the enzyme in both liver and adipose tissue 

is the most beneficial [222, 223]. The inhibition of the enzyme in the liver influences 

gluconeogenesis [224, 225] whereas in the adipose tissue have positive effects on 

adipocyte differentiation (reduced weight) and production of adipokines which is 

entailed in the metabolic syndrome (e.g. adiponectin) [226]. Thus it is expected that 

prolonged inhibition of 11β-HSD1, in adipose tissue and liver both, would be 

effectual in treating diabetes with a potential for positive effects on hypertension and 

dyslipidemia. The nonselective 11β-HSD1/11β-HSD2 inhibitor, carbenoxolone, 

showed improved insulin sensitivity in rodent and humans [227, 228] but with a 

limited utility. 11β-HSD2 enzyme converts cortisol to its inactive metabolite 

cortisone predominantly in the kidney. Selectivity over the 11β-HSD2 enzyme is 

important to avoid apparent mineralocorticoid excess syndrome which is a result of 

cortisol action on the mineralocorticoid receptor to induce sodium retention, 

hypokalemia and hypertension [229]. A number of selective synthetic inhibitors of 

11β-HSD1 have been described [230]. These compounds have demonstrated their 

utility as anti-diabetic agents [231] in preclinical models. In clinical trials, several of 

the 11β-HSD1 inhibitors showed modest improvements in glycemic control and 

demonstrated components of the metabolic syndrome [232-236].  

 The 11β-HSD1, expressed abundantly in metabolically important tissues 

including adipose, muscle and liver tissue that become resistant to insulin action in 

type 2 diabetes. The development of the drugs inhibiting 11β-HSD1 is urgently 

desired since the inhibition of it renders the ability to restore the metabolic action of 

insulin in these tissues.  
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3.2. THE G PROTEIN-COUPLED RECEPTOR 119 (GPR119)  

 Except DPP-4 inhibitors, several deorphanized nonpeptide binding G protein-

coupled receptors (GPCRs) are being evaluated for the T2DM as candidate GLP-1 

secretagogues [237, 238]. Much attention received from the pharmaceutical industry 

is the G protein-coupled receptor 119 (GPR119). GPR119 is an attractive drug target 

for treating T2DM and agonists of it may be represented as new potential insulin 

secretagogues devoid of the risk of causing hypoglycemia. 

 GPR119, described as a class A (rhodopsin-type) orphan GPCR, is having no 

any primary sequence relative in the human genome [239]. The increase in the 

intracellular accumulation of cAMP on activation of GPR119 results into enhanced 

glucose-dependent insulin secretion from pancreatic β-cells and increased release of 

the gut peptides GLP-1 (glucagonlike peptide 1), GIP (glucose-dependent 

insulinotropic peptide) and PYY (polypeptide YY) [240]. GPR119 agonists have 

been proposed as a novel therapeutic strategy for diabetes because in preclinical and 

clinical studies with GPR119 agonists in type 2 diabetes there are indications of 

lowering blood glucose without hypoglycemia, slowing down of diabetes progression 

and reducing food intake and body weight.  

 Based on the data afforded by the Human Genome Project the GPR119 was 

described in the literature as a Class A receptor with no close relatives. The 

independent studies described this receptor under various synonyms such as 

SNORF25 [241, 242], RUP3 [243], GPCR2 [244], 19AJ [245], OSGPR116 [246], 

MGC119957, HGPCR2 and glucose-dependent insulinotropic receptor (GDIR) [247]. 

The confusing nomenclature has now been rationalized as “GPR119”. The human 

GPR119 receptor is encoded by a single exon with introns located on the short arm of 

X-chromosome (Xp26.1). The homologs of GPR119 have been identified in several 

vertebrate species such as the rat, mice, hamster, chimpanzee, rhesus monkey, cattle 

and dog [245].  Fredriksson et al. [239] reported that the rat isoform of GPR119 as 

being 133 amino acids longer than the mouse and human receptors (468 vs. 335 

amino acids) [248]. On the other hand another reports by Bonini et al. [241, 242] and 

Ohishi et al. [249] documented identical sequences for the rat receptor, which are 335 
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amino acids in length having 96% amino-acid identity with mouse GPR119.   

 It has been proposed, using methods to detect receptor GPR119 mRNA, that 

in human tissues consistently identified major sites of GPR119 mRNA expression are 

the pancreas and foetal liver and the gastrointestinal tract in several studies. In 

rodents, mRNA was detected in most of the examined tissues including the pancreas 

[250] and gastrointestinal tract particularly the colon and small intestine. It is also 

expressed in certain regions of the rat brain.  It is revealed from the in situ studies that 

in pancreatic islets the main site of GPR119 expression are pancreatic β-cells [251] 

and this observation is supported by the high expression levels in pancreatic β-cell 

lines NIT-1, MIN6 and RIN5 [252, 253]. With the consistent expression in gut 

tissues, GPR119 mRNA expressed strongly in several rodent GLP-1 secreting L-cell 

lines-such as STC-1, FRIC, Hnci-h716 and GLUTag line [253, 254].  

 Presence of GPR119 mRNA has also evinced in glucosedependent 

insulinotropic peptide (GIP)-producing murine intestinal K cells [255]. In transfected 

HEK293 cells high-level expression of GPR119 increases intracellular cAMP levels 

via activation of adenylate cyclase which indicates efficient coupling of this receptor 

to Gαs. Increase in cAMP levels by the potential endogenous ligands and synthetic 

small molecule agonists of GPR119 support it. The possible actions of GPR119 have 

been shown in Figure 2.2.  

 The first proposed endogenous ligand for GPR119, based on the ability to 

stimulate glucose-dependent insulin release and increase cAMP in GPR119-

transfected cells, was lysophosphatidylcholine (LPC). The potency to promote a 

concentration-dependent increase in cAMP levels in stably transfected and 

endogenous GPR119-expressing cell lines of fatty-acid amide oleoylethanolamide 

(OEA) was more than that of LPC [256]. OEA produced a number of 

pharmacological effects in rodent studies [257] such as reduced food intake and body 

weight gain by interaction with the nuclear receptor peroxisome proliferator activated 

receptor α (PPAR-α) [258], increased fatty acid uptake by adipocytes and enterocytes 

by increasing fatty acid translocase expression [259], altered feeding behaviour and 

motor activity through activation of an ion channel (the transient receptor potential 
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channel, TRPV1) [260]. 
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Figure 2.2: Diagram showing the possible actions of GPR119 agonists. 

 The endovanilloid compounds, N-oleoyl dopamine (OLDA) and olvanil, 

having similar in vitro potencies as of OEA also described as GPR119 agonists. The 

increased GIP release and improved oral glucose tolerance on oral administration of 

OLDA (100 mg/kg) in mice has also been observed in in vivo studies which were not 

present in GPR119 null mice. However, OEA and OLDA are less potent and selective 

than the natural ligands identified for many other GPCRs, represent the best 

candidates for endogenous ligands. This work opens the scope for other lipid amides 

to exert physiological role via GPR119 signaling.  
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 A number of publications focusing on the problem of exogenous influence on 

the incretin system are available in literature [261-263]. Incretins are gastrointestinal-

derived hormones which are   released in response to a meal and a key role in the 

regulation of postprandial secretion of insulin and glucagon by the pancreas is played 

by them [264]. The incretin system is getting much attention because the incretin 

effect is severely reduced or absent in patients with T2D [265]. In this context the 

restoration of adequate incretin biosynthesis and metabolism may be a potential 

strategy of T2D treatment [266]. This approach is devoted to the development of such 

drugs which are able to stimulate the incretin secretion by activating the GPCR 

expressed on the intestinal enteroendocrine cells. Receptors of this group function as 

the sensors of fatty acids, their derivates and some other digestion products. The 

stimulation of incretin secretion, by the activation of such receptors, stimulates the 

synthesis and secretion of insulin leading to a state of postprandial normoglycemia 

[267, 268]. Glucose-depended activation of insulin secretion [269, 270] is the result 

of the activation of GPR119, expressed in L- and K-cells of intestine as well as in 

pancreatic β-cells [271].  

 Such type of mechanism of agonistic action of GPR119 is supposed to be 

advantageous because it offered a pronounced antihyperglycemic effect devoid of risk 

of excess hypoglycemia and rendering such substances as promising candidates for 

the role of drugs for T2D treatment [272]. The non-clinical studies and investigations 

performed previously in healthy volunteers has established that GPR119 are capable 

to increase the level of circulating incretins including GLP-1, GIP and tyrosine-

tyrosine peptide (PYY) and reduce the hyperglycemia after oral glucose load [273]. 

The demonstrated several secondary pharmacodynamic effects such as cerebral, 

cardiac and endothelial protection in animal studies are contrary to the antidiabetic 

medications, as that have only the hupoglycemic action. Due to these secondary (or 

“pleiotropic”) effects the GPR119 agonists might be essential for the prevention of 

T2D complications [274, 275]. 

 The investigations of several research groups [276, 277] on multiple small-

molecule GPR119 agonists led to the development of clinical compounds which 
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include APD668 [278], GSK1292263 [279] and MBX-2982 [280]. Poor aqueous 

solubility of GPR119 agonists causes low bioavailability, produces erratic assay 

results in in vitro studies and carries a high risk of not advancing due to potential 

toxicity which may not be recognized during preclinical studies [281, 282]. The value 

of GPR119 agonists as a new class of therapeutics for T2D and associated obesity is 

likely to be determined in due course of time.  

3.3. THE TAKEDA G PROTEIN RECEPTOR 5 (TGR5)  

 The intestinal absorption, emulsification, and transport of lipophilic nutrients 

and vitamins by bile acids (BAs) are facilitated by the amphipathic steroid molecule 

possessed by them. BA is the catabolism product of cholesterol in the liver. In recent 

years, BA showed pleiotropic responses [283] similar as the endogenous molecules 

such as glucose and energy homeostasis [284]. It is also found that some of the BAs 

scape the enterohepatic cycling to reach the systemic circulation [285]. Participation 

of BAs in various functional processes like lipid and glucose homeostasis, energy 

expenditure, intestinal mobility, inflammation [286], configuration, and the growth of 

gut microbiome or the skeletal muscle mass [287] is well established. There are also 

indications of involvement of dysregulated signaling of BAs in various disorders such 

as diabetes, obesity, dyslipidemia, fatty liver disease, atherosclerosis, cholestasis, 

gallstones and cancer [288]. BAs furnish these effects in multiple organs basically by 

binding with the nuclear hormone farnesoid X receptor (FXR) and Takeda G protein 

receptor 5 (TGR5) [289].  

 The clinical treatment of T2DM patients with the BA-like agent(s) or bariatric 

surgery in obese patients, showed a noticeable improvement in glycemic control 

which are possibly due to changes in TGR5 and signaling. The G protein-coupled 

receptor, TGR5 is expressed in many tissues such as intestine, gallbladder, adipose 

tissues, skeletal muscle, brain and pancreas. Thus, the activation of TGR5 by BA 

induces the formation of the cyclic AMP (cAMP) which in turn may activate protein 

kinase A (PKA) in cells and tissues [290]. In human TGR5-transfected CHO cells 

tauro-lithocholic acid (TLCA), lithocholic acid (LCA), deoxycholic acid (DCA), 

chenodeoxycholic acid (CDCA) and cholic acid (CA) induced cAMP production in 
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dose-dependent manner. The rank order of potency in terms of EC50 was found to be 

TLCA (0.33 µM) >LCA (0.53 µM) >DCA (1.01 µM) >CDCA (4.43 µM) >CA (7.72 

µM) [291]. CDCA, DCA, LCA and ursodeoxycholic acid (UDCA) may also be 

involved in activation of FXR [292]. Linolenic acid and oleanolic acid [293], ursolic 

acid [294] and glycyrrhizic acid [295] also activate TGR5 and triamterene appeared 

as as the useful blocker of TGR5 [296]. The induction of insulin secretion is more 

pronounced in oral glucose rather than an isoglycemic intravenous injection.  

 Thus, entero-endocrine K- and L-cells are identified which are known to 

secrete the incretins, both glucose-insulinotropic polypeptide (GIP) and glucagon-like 

peptide (GLP)-1. In L-cells, the action of prohormone convertase 1/3 just after the 

transcription and translation into proglucagon, leads to secretion of GLP-1, GLP-2, 

oxyntomodulin and IP2. On the other hand, the action of prohormone convertase 2 in 

pancreatic α-cells leads to glucagon, glicentin-related polypeptide, IP1 and major 

proglucagon fragment [297]. The half-life of GLP-1 in blood is about 1.5-5 min 

because of rapid degradation of it by dipeptidyl peptidase 4 (DPP-4). Therefore in the 

treatment of T2D, inhibitors of DPP-4 are being used successfully now.  

 The activation of TGR5 promotes GLP-1 secretion from intestinal L cells as a 

result of a closure of the ATP-dependent potassium channel (KATP) and a higher 

mobilization of intracellular calcium to enhance GLP-1 secretion. GLP-1 biosynthesis 

and secretion is also enhanced by glucose. However, GLP-1 secretion by intestinal L 

cells is negatively regulated by FXR through inhibition of pro-glucagon gene 

expression and suppression of GLP-1 secretion through the interfering with pathways 

activated by glucose [298]. Thus, activation of both TGR5 and FXR by BA in 

intestinal L cells might induce opposite effects on GLP-1 secretion and production. 

TGR5 activation in L cells likely occurs rapidly after intaking the food, on the other 

hand activation of FXR induces a more delayed response which requires 

transcriptional activation. The pancreatic β-cells having expression of both of TGR5 

[299] and FXR [300] promotes glucose-stimulated insulin secretion by increasing 

intracellular calcium concentration. TGR5 is identified in pancreatic α-cells in 

pancreatic islet. In pancreatic islet, the activation of TGR5 in pancreatic α-cells, 
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switches the α-cell secretory phenotype from glucagon to GLP-1 and the result of 

which is a paracrine effect on β cells to stimulate insulin secretion [301]. 

 T2DM, well known as a heterogeneous group of disorders, is mostly 

characterized by a decline in insulin-producing pancreatic β-cells, an increase in 

peripheral insulin resistance, an increase in hepatic glucose production or a 

combination of all these factors [302]. The T2DM therapies are mostly paying 

attention on reducing of hepatic glucose production, increasing of insulin secretion 

and improving insulin sensitivity [303]. TGR5 being a receptor of bile acids effects 

the regulation of glucose homeostasis. In a murine enteroendocrine cell line, STC-1, 

activation of TGR5 promoted GLP-1 secretion [290]. The ability to enhance insulin 

secretion after oral administration of glucose by GLP-1 advocated the potential 

treatment of T2DM via the management of glucose homeostasis by activatingTGR5. 

In addition to this, TGR5 might also induce cAMP-dependent thyroid hormone 

activating enzyme type 2 iodothyronine deiodinase that may cause elevated energy 

expenditure in brown adipocytes and skeletal muscles [304]. The differential 

translation of the C/EBPb isoform by AKT-mTOR pathway in macrophages is also 

induced by TGR5. The insulin action for treatment of T2DM may be improved by the 

activation of TGR5 through altering adipose tissue macrophage function [305]. The 

other possible mechanism may be connecting TGR5 signaling and elevated energy 

expenditure via modifications in the gut microbiome [306]. Thus, TGR5 activation 

for T2DM is not solely dependent on GLP-1. Furthermore, TGR5 also plays role in 

inhibiting renal disease in obesity and diabetes through inducing mitochondrial 

biogenesis and help to prevent renal oxidative stress and lipid accumulation [307]. In 

obesity, new roles of TGR5 have also documented [308]. 

 The gallbladder volume in mice has been increased due to systemic exposure 

to TGR5 agonists [309]. The investigation in mice and dogs of an agonist of TGR5, 

FC-92-EC85, have shown hepatobiliary and cardiovascular effects which limits the 

utility of systemic TGR5 agonist in diabetes [310]. A novel topical intestinal agonist 

of TGR5 which was given orally to obese and insulin-resistant mice demonstrated not 

only a prominent elevation in GLP-1 levels but significant improvement in glucose 
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tolerance also. In lean mice, intestinal TGR5 agonist did not produced a significant 

change in gallbladder size [311]. Therefore, it is expected that an ideal TGR5 agonist 

must be intestinal-specific agonist reaching L cells and must not affecting other 

systemic tissues. Although, the impact of the intestinal TGR5 agonist on human 

gallbladder is still remained unclear and the therapeutic potential for T2DM in the 

clinic needs this issue must be addressed in advance. 

3.4. THE SIRTUINS 

 Aging, which affects all organs, is a universal process. The result of age-

related commotions in cellular homeostasis is in the form of decline in the 

responsiveness to physiological stress such as oxidative stress and inflammation 

which have implications in the pathogenesis of insulin resistance and T2DM like 

metabolic diseases. One of the sources of reactive oxygen species (ROS) is 

mitochondria which play a key role in energy production and responsiveness to 

nutrient availability [312]. Thus the decline in mitochondrial function is also closely 

related to the impairment of metabolic homeostasis [313] and oxidative stress [314, 

315] that are contributing to the progression of insulin resistance and T2DM 

associated with aging. The suppression of oxidative stress/inflammation and 

preservation of mitochondrial function must be considered as therapeutic targets for 

insulin resistance and T2DM and for anti-aging treatments because oxidative stress is 

closely linked to inflammation [316, 317].  

 In yeast, worms, flies and rodents the calorie restriction (CR) retarded aging 

or extended the life spans [318]. The beneficial effects of CR have also been observed 

in the suppression of age-related diseases, by improving insulin sensitivity and 

reducing inflammation and oxidative stress such as glucose intolerance, 

cardiovascular disease and cancer in rhesus monkeys or humans [319-321]. Sirtuins 

may play a significant role in modifying lifespan in relation to the benefits of CR, 

particularly. In a study on aging in yeast [322] silent information regulator 2 (Sir2), a 

nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase was identified as 

the possible molecule by which CR promotes lifespan extension. In higher eukaryotic 

organisms the homologs of Sir2, known as SIRT1, may contribute to CR-induced 
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longevity [323-325]. In mammals there are seven identified sirtuins (including 

SIRT1) at present [326, 327)] and these are mentioned, along with their catalytic 

activity and localization in Table 2.1.  

Table 2.1: The seven sirtuins in mammals 

S. No. Sirtuin Catalytic activity Localization 

1 SIRT1 Deacetylase Nucleus and cytoplasm 

2 SIRT2 Deacetylase Cytoplasm and nucleus 

3 SIRT3 Deacetylase Mitochondria 

4 SIRT4 ADP-ribosyl transferase Mitochondria 

5 SIRT5 Deacetylase Mitochondria 

6 SIRT6 Deacetylase and ADP-ribosyl transferase Nucleus 

7 SIRT7 Deacetylase Nucleus 

 In literature, the multiple physiological roles of sirtuins in cellular function 

like glucose metabolism, mitochondrial function and resistance against cellular 

stresses such as oxidative stress and inflammation has been documented [326-331]. It 

provides the basis for the modulation of sirtuin activity as a CR mimetic for insulin 

resistance and T2DM drug target. It has been reported that chronic inflammation, 

oxidative stress and impaired mitochondrial function in skeletal muscle, adipose 

tissue or monocytes/macrophages [332, 333] are intimately related to the 

pathogenesis of insulin resistance and T2DM. The dysfunction of pancreatic β-cell 

[334, 335] caused by inflammation and oxidative stress is contributive to the 

progression of T2DM.  

 In insulin-resistant and diabetic conditions the activation of monocytes in the 

circulation, adipocytes and macrophages residing in adipose tissue show the way to 

release of various inflammatory mediators such as tumor necrosis factor-α (TNF-α), 

interleukin-6 (IL-6) and chemoattractant protein-1 (MCP-1). Cytokines play a crucial 

role in the pathogenesis of insulin resistance in adipose tissue and skeletal muscle as 

inflammatory signaling pathways, such as the inhibitor of IkB kinase (IKK) and c-Jun 

NH2-terminal kinase (JNK) pathways, activated by cytokines impair the insulin 
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signaling pathway by modulating phosphoinositide 3-kinase (PI3K) and Akt [336-

338]. The impaired insulin signaling by oxidative stress is also contributory to the 

insulin resistance in T2DM. In insulin-resistant or diabetic conditions not only the 

hyperglycemia but other metabolites such as free fatty acids (FFAs) and certain 

cytokines such as TNF-α also induce the overproduction of ROS from mitochondria. 

The activation of serine/threonine kinases, such as p38 mitogen activated protein 

kinase (p38 MAPK), JNK and IKK triggered by ROS induces the serine 

phosphorylation of insulin receptor substrate-1 (IRS-1) which then degrades IRS-1 

and reduces IRS-1 tyrosine phosphorylation that in turn leads to the suppression of 

insulin signaling [339-342] and inflammation as well. The pancreatic β-cell 

dysfunction is also related to the inflammatory mediators and oxidative stress as these 

resulted in the impairment of insulin production or excretion from β-cells.  

 In the pathogenesis of insulin resistance and progression of T2DM associated 

with aging the impairment of mitochondrial function in skeletal muscle is also 

involved. A pivotal role in energy production and responsiveness to nutrient 

availability is played by mitochondria as it regulates the mitochondrial oxidative 

phosphorylation (OXPHOS) and fatty acid oxidation. In the patients with insulin 

resistance and T2DM and in elderly individuals, the rate of mitochondrial OXPHOS 

is reduced and the intramyocellular lipid accumulation is increased in the skeletal 

muscle [343-346]. Aging is linked closely to the impairment of metabolic 

homeostasis like insulin resistance and T2DM and these are closely related to the 

decline in mitochondria function. The decline in mitochondrial function generates 

excess ROS from mitochondria linking oxidative stress to inflammation. In this way, 

oxidative stress, inflammation and mitochondrial dysfunction make a vicious cycle 

represented in Figure 2.3.  

 For the treatment of age-related insulin resistance and T2DM the breaking of 

this cycle may be a therapeutic target.  
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Figure 2.3:  A vicious cycle among oxidative stress, inflammation, and mitochondrial 

dysfunction.  

SIRT1 

 SIRT1, having NAD
+
-dependent deacetylase activity, showed existence in the 

nucleus and cytoplasm [327]. SIRT1 functions as class III histone deacetylases. It 

binds to NAD
+
 and acetyllysine within protein targets and generates lysine, 2’-O-

acetyl-ADP-ribose, and nicotinamide as enzymatic products. Nicotinamide acts as a 

negative-feedback inhibitor of SIRT1. The enzymatic activities of SIRT1 have been 

depicted in Figure 2.4. 

 

Figure 2.4: Schematic diagram of enzymatic activities of SIRT1. 
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 Various nonhistone proteins associated with a wide variety of cellular 

processes such as transcription factors, transcriptional coregulatory proteins and 

histones serve as substrates for SIRT1. The biological functions of SIRT1 are given in 

Table 2.2. 

Table 2.2: Biological functions of sirtuin 1 

Activity Function Target 

Metabolism 

Glucose metabolism PGC-1α, IRS2, PTP1B, UCP2, LKB1 

Lipid metabolism PGC-1α, PPAR-α, SREBP, LXR, FXR 

Mitochondrial biogenesis PGC-1α 

Autophagy Atg5, Atg7, LC3, FOXOs 

Inflammation NF-κB (p65) 

Circadian rhythms BMAL1, PER2 

Others  

Apoptosis FOXOs, p53, Smad7 

Stress resistance FOXOs, PARP1, HIF 

Chromatin silencing H3K9,H3K14, H4K16, H1K26 

PGC, peroxisome proliferator activated receptor-γ coactivator; IRS, insulin receptor 

substrate; PTP1B, protein tyrosine phosphatase 1B; UCP, uncoupling protein; LKB, 

liver kinase B; PPAR, peroxisome proliferator activated receptor; SREBP, sterol 

regulatory element binding protein; LXR, liver X receptor; FXR, farnesoid X 

receptor; Atg, autophagy-related gene; LC3, light chain 3; FOXO, forkhead box O; 

NF-κB, nuclear factor-κB; BMAL, brain and muscle aryl hydrocarbon receptor 

nuclear translocator-like; PER2, period 2; PARP, poly-ADP-ribose polymerase; HIF, 

hypoxia inducible factor.  

 SIRT1 plays a crucial role in a variety of processes such as regulation of 

insulin secretion and β-cell protection, repression of the inflammation, and regulation 

of insulin signaling, mitochondrial biogenesis and subsequent reactive oxygen species 

(ROS) generation, adipogenesis, adiponectin secretion, hepatic glucose/lipid 

metabolism, and circadian rhythms. Additionally, SIRT1 may also improve insulin 

resistance and diabetic status. The role of SIRT1  on glucose/lipid  metabolism in  
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relation to type 2 diabetes mellitus is summarized in Table 2.3.  

Table 2.3: The role of SIRT1 on glucose/lipid metabolism in relation to type 2 

diabetes mellitus 

Pancreas   Insulin secretion ↑ β-Cell protection ↑ 

Insulin signaling   Insulin sensitivity ↑ 

Inflammation   Insulin sensitivity ↑ 

Adipose tissue   Lipid mobilization↑ Adiponectin↑ 

Skeletal muscle   Mitochondria biogenesis ↑ Glucose uptake ↑ 

Mitochondria   Biogenesis ↑ ROS ↓ Fatty acid oxidation ↑ 

 

Liver 

 

  Glucose/Lipid metabolism 

Glucose production 

Fatty acid oxidation ↑ 

Circadian rhythm   Glucose/Lipid metabolism 

 

 Thus, it is noteworthy to mention that SIRT1 might be a pharmacological 

therapeutic target to treat insulin resistance and T2D [347]. The acquaintance of 

sirtuins has got extension from the original description of a NAD+-dependent 

deacetylase that was responsible for longevity in yeast and associated with CR. 

Sirtuin1 (SIRT1) as described above and other sirtuin family members such as 

SIRT2, 3, and 6, may also induce beneficial effects in glucose metabolism, partially 

through improving inflammation, oxidative stress and maintaining mitochondrial 

function. Therefore, modulation of sirtuins pharmacologically may represent a novel 

therapeutic approach for improvement of insulin resistance and T2DM. The 

antidiabetic effects of several SIRT1 activators including resveratrol and synthesized 

activators, in animal models have been evaluated [348].  

 Several small trials in humans have revealed that SIRT1 activators exert 

beneficial effects on glucose metabolism and insulin resistance resembling to the CR 

effect [349]. There is still lack of sufficient clinical data pertaining to the effect of 

SIRT1 activators on insulin resistance and T2DM. Additionally, other CR induced 

sirtuins such as SIRT2, SIRT3 and SIRT6 play critical roles in regulation of cellular 

processes such as metabolism, inflammation, oxidative stress and mitochondrial 

function. For the development of new strategies to treat insulin resistance and T2DM 
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further investigation into the targets and functions of sirtuins SIRT1, SIRT2, SIRT3 

and SIRT6 is desired. Other sirtuins family members SIRT4, SIRT5 and SIRT7 in 

addition to SIRT1, SIRT2, SIRT3 and SIRT6 play pivotal roles in cellular 

homeostasis and functions, including redox homeostasis, anti-inflammation, cell 

survival, and mitochondrial quality control [350-355] that may be engaged in the 

pathogenesis of insulin resistance and T2DM. For the elucidation of the detailed 

molecular mechanisms further basic studies are necessary. 

3.5. THE SODIUM GLUCOSE COTRANSPORTER 2 (SGLT2) INHIBITORS

 Sodium glucose cotransporter 2 (SGLT2) inhibitors are a novel class of FDA 

approved prescription drugs to lower blood glucose levels along with diet and 

exercise for type 2 diabetic patients. At present these are not approved for use in type 

1 diabetic patients. The mechanistic aspect of these drugs is the inhibition of SGLT2 

in the early proximal tubule of the kidneys [356, 357]. The reabsorption of glucose, 

which has been filtered by the glomeruli of the kidneys, is the foremost function of 

this SGLT2. It accounts for nearly 97% of renal glucose reabsorption and remaining 

by SGLT1 located in the downstream late proximal tubule, in normoglycemic 

conditions, in such a manner that urine is nearly free of glucose in healthy individuals 

[357]. In hyperglycemic patients the inhibition of SGLT2 results in to increase in 

glucosuria and decline in serum glucose levels.  

 The effect is more pronounced in the setting of hyperglycemia as the latter 

increases the filtered load of glucose to the proximal tubule and enhances glucose 

reabsorption via SGLT2 and as a consequence leads the glucosuric effect of SGLT2 

inhibition. In diabetic patients, this glucosuric effect may further increase because of 

a diabetes-associated increase in renal SGLT2 expression. However, it is a debatable 

matter due to availability of positive and negative data [357-360]. In diabetes, the 

renal glucose reabsorption via SGLT2 increases that is contributing to maintain 

hyperglycemia whereas, the inhibition of SGLT2 opposes these effects. 

 Phlorizin, a flavonoid contained in the bark and fruit of fruit trees, discovered 

over 100 years ago was the first SGLT2 inhibitor. It is a nonspecific SGLT inhibitor 

which inhibits both SGLT2 and SGLT1 but SGLT2 with a tenfold higher affinity. It 
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is worth mentioning and in contrast to SGLT2 that SGLT1 have expressions in 

various body tissues, in addition to the renal tubules, such as the small intestines 

where SGLT1 is expressed in the luminal membrane and responsible for glucose 

reabsorption [361]. Consequently, inhibition of SGLT1 with phlorizin may produce 

extrarenal side effects like diarrhea. Phlorizin derivates have been developed as more 

specific inhibitors of SGLT2 to avoid SGLT1-dependent side effects. Dapagliflozin 

(Forxiga™/Farxiga™), canagliflozin (Invokana™), ertugliflozin (Steglatro) and 

empagliflozin (Jardiance™) are the phlorizin derivates which have been approved by 

FDA for the treatment type 2 diabetic patients in the USA. These derivatives have 

shown an expected HbA1c-lowering effect of 0.7–0.8% from a baseline of around 

8.0% [356, 357, 362]. Under normal circumstances, in the late proximal tubule 

SGLT1 is mostly inactive because of the upstream reabsorption of filtered glucose via 

SGLT2 that permits very little glucose to pass by, and only a small fraction of the 

glucose transport capacity of SGLT1 is active. 

 The reabsorptive capacity of SGLT1 has been unmasked by the increased 

glucose load to the late proximal tubule by SGLT2 inhibition. Consequently, when 

SGLT2 is inhibited in euglycemic conditions the renal glucose reabsorption remains 

at around 40-50% of filtered glucose and with preserved glomerular filtration rate 

(GFR) is due only to SGLT1 [357]. SGLT2 become ineffective once the filtered load 

falls below the transport capacity of SGLT1 (nearly 80 g/day) as the glucosuric effect 

of SGLT2 inhibitors is coupled to the filtered load of glucose. Hence, SGLT2 

inhibitors are not FDA approved for use in type 2 diabetic patients having severely 

reduced GFR. Dapagliflozin, empagliflozin and canagliflozin are FDA approved for 

use in T2D patients. The hepatic gluconeogenesis is enhanced due to the counter-

regulatory mechanisms triggered by SGLT2 inhibitors that prevent a further reduction 

in blood glucose levels and increases in glucagon levels. SGLT2 inhibitors do not 

cause hypoglycaemia as they do not stimulate insulin secretion or action and their 

effect ebbs as blood glucose levels fall [363-365]. The potential mechanism 

contributing to the protective effects of these compounds on the renal and 

cardiovascular system is lowering of blood glucose without increasing the risk  of  
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hypoglycemia [366].  

SGLT2 Inhibitors and T2DM 

 The beneficial cardiovascular and renal effects of the SGLT2 inhibitors in 

type 2 diabetic patients were shown in the EMPA-REG OUTCOME trial [367]. In 

this trail, the effects of empagliflozin on cardiovascular and renal outcomes were 

7020 high cardiovascular risk type 2 diabetic patients with an estimated GFR (eGFR) 

of ≥ 30 mL/min
−1

 (1.73 m
2
)
−1

. Empagliflozin, using angiotensin converting enzyme 

(ACE) inhibitor or angiotensin II receptor blocker (ARB) as standard of care therapy 

reduced the rate of nephropathy. The rate of nephropathy was defined as progression 

to macroalbuminuria, doubling of serum creatinine, initiation of renal replacement 

therapy or death from renal disease with a relative risk reduction of 39%. It also 

reduced the rate of doubling of creatinine by 44% and progression to end stage renal 

disease by [367]. The SGLT2 inhibitor also reduced the rate of death from 

cardiovascular disease by 38, hospitalization for heart failure by 35 and death from 

any cause by 32%, in addition to renal benefits [368]. 

 The second trial was the CANVAS program which involved 10142 type 2 

diabetic patients and that showed significant cardiovascular and renal benefits of an 

SGLT2 inhibitor. In this case canagliflozin was compared to placebo. The composite 

outcome of sustained reduction in eGFR, the need for renal replacement therapy or 

death from renal causes as renal benefits were less in canagliflozin group than the 

placebo group with a hazard ratio of 0.6, similar to the EMPA-REG-OUTCOME 

trial. In both the trials the rate of heart failure was significantly lowered. In terms of 

cardiovascular death, there were no significant differences in the canagliflozin and 

placebo groups [369].  

 The primary outcome in both trials was a combination of death from 

cardiovascular causes, nonfatal myocardial infarction or nonfatal stroke. The relative 

reduction of risk, in both trials, of this outcome between the treatment and placebo 

arms was significant at 14%. The difference between these two trials in terms of 

cardiovascular death may curtail from the fact that the EMPA-REG OUTCOME trial 

included a higher prevalence (99%) of cardiovascular disease at baseline compared to 
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the CANVAS program (65%). As far as the adverse effects concerned the main 

difference between the two trials was the increased risk of amputations seen with 

canagliflozin. Canagliflozin taking patients had nearly 2 times higher risk of 

demanding an amputation, mainly toe and metatarsal, compared to placebo [369]. 

Further studies are needed to better understand this issue as it was not reported in 

previous trials involving canagliflozin.  

SGLT2 Inhibitors and T1DM  

The progressive loss of pancreatic islet β-cells via an autoimmune mechanism results 

in insulin deficiency and ultimately hyperglycemia in type 1 diabetic patients. Thus, 

due to insulin deficiency, intake of insulin is a required part of the treatment regimen 

for type 1 diabetic patients. The recommended glycemic control goal (HbA1c<7.0%) 

by the American Diabetes Association could not be achieved by nearly 75% of type 1 

diabetes adults [370]. The hypoglycemia caused by insulin can lead to death and in 

the long term enhance cardiovascular risk in these patients [371].  

 Pramlintide is the only FDA approved non-insulin drug for use in type 1 

diabetic patients and it lowers the glucose levels by inhibiting glucagon secretion 

[372]. Efficient therapies for type 1 diabetic patients are strongly desired due to a 

high cardiovascular risk [373]. SGLT2 inhibitors may provide an attractive addition 

to the typical insulin-only regimens prescribed for poorly controlled T1D patients 

who are compliant with their insulin therapy and suffer from frequent episodes of 

hypoglycemia. To assess the efficacy SGLT2 inhibitors in T1D patients, three 

prospective, well powered, doubleblind, placebo-controlled trials have been 

completed and published. 

 Henry and colleagues performed the first trial consisting of 351 patients with 

type 1 diabetes, randomized into three groups receiving daily doses of 100 or 300 mg 

of canagliflozin or placebo. The primary endpoint was the proportion of patients who 

achieved HbA1c reduction from baseline of more than 0.4% and no weight gain. In 

this 18-week trial, significantly more patients in the 100 and 300 mg canagliflozin 

groups achieved goals as compared to placebo (36.9 and 41.4 vs 14.5%, respectively; 

p<0.001). Furthermore, both the doses of canagliflozin reduced HbA1c, body weight  
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and the total required insulin dose significantly as compared to placebo [374]. 

 In the second study, the DEPICT1 trial, 833 patients were randomized into 

three different treatment arms: doses of 5 and 10 mg/day of dapagliflozin and were 

compared with placebo. After 24 weeks of treatment, both doses of dapagliflozin 

significantly and to a similar extent reduced HbA1c levels as compared to placebo. 

This study also revealed that total daily insulin dose and body weight were 

significantly reduced in the treatment arms as compared to placebo [375]. 

 The biggest phase 3 trial comprising 1402 patients assessing the efficacy and 

safety of an SGLT2 inhibitor in type 1 diabetic patients to date was the inTandem3 

trial and was published in September 2017 [376]. In this trail, patients were assigned 

a combination of SGLT2 and SGLT1 inhibitor to insulin therapy plus placebo versus 

insulin therapy plus sotagliflozin (400 mg per day) for 24 weeks.  28.6% of patients 

in sotagliflozin group and 15.2% of patients in the placebo group met the primary end 

point. Additionally, sotagliflozin group patients achieved a significant lowering in 

HbA1c, systolic blood pressure and body weight and less daily insulin compared to 

the placebo group [376]. 

 The selectivity for SGLT2 over SGLT1 for sotagliflozin, dapagliflozin, 

canagliflozin and empagliflozin is approximately 20:1, 1167:1, 263:1 and 2667:1, 

respectively [377, 378]. The oral application of sotagliflozin decreases glucose 

absorption by SGLT1 inhibition in the small intestine that causes postprandially 

glucose lowering which is the added benefit of sotagliflozin compared to the more 

selective SGLT2 inhibitors. The SGLT1 inhibition, in the small intestine, might also 

induce a sustained postprandial increase in glucagon like peptide 1 (GLP1) which 

may elevate glucose-dependent insulin secretion in T2D [361]. In the absence of 

endogenous insulin secretion this effect becomes inappropriate. The inTandem trial 

revealed that patients reporting diarrhea were double in the sotagliflozin group 

compared to the placebo group [376] and this risk was lower than expected. 

Sotagliflozin inhibits SGLT2 after reabsorption into the systemic circulation in 

kidney. It is still unclear weether the tubular sotagliflozin concentrations following its 

oral application are high enough to inhibit SGLT1 in the kidneys. It would be 
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advantageous to know for better understanding the role of the kidney in the potential 

differences in side effects between highly and less selective SGLT2 inhibitors.  

SGLT2 Inhibitors in T1DM: Safety Aspects 

 The T1D patients are more prone to DKA than T2D patients, so the use of 

SGLT2 inhibitors in the T1D population is of particular concern. It is still not fully 

understood that in what manner SGLT2 inhibitors increase ketone levels in the serum 

and induce DKA. According to one   proposed hypothesis that due to glucosuric and 

blood-glucose lowering effects of SGLT2, endogenous insulin release decreases and 

glucagon levels increases [379]. In type 1 diabetic patients, insulin dose is lowered as 

drugs cannot reduce endogenous insulin levels. The enhanced lipolysis caused by the 

changes in insulin and glucagon releases more free-fatty acids from adipose tissue 

and these are then used for ketogenesis by the liver. At low blood glucose levels, the 

ketone bodies are released into the systemic circulation to provide an alternative 

energy substrate. When the level of plasma ketone bodies is high, the facilitated renal 

retention of ketone bodies by lowering GFR by SGLT2 inhibitors  reduce the filtered 

amount of ketone bodies below the renal tubular reabsorption capacity [380]. 

Therefore, in the absence of hyperglycemia SGLT2 inhibition causes DKA and 

increased ketonemia [379, 380]. The low basal endogenous insulin levels increase the 

risk of DKA in type 1 diabetes. A number of potential ketoacidosis triggers major 

illness, reduced food and fluid intake, concomitant mild infection, increased physical 

activity and/or reduced food intake and acute insulin dose reduction or omission have 

been identified in type 1 diabetes patients. On the other hand, in some cases there 

were no identified contributing factors [380, 381]. Based on the adverse events of 

ketoacidosis reported to the FDA related to the use of SGLT2 inhibitors, the FDA 

revised the label on SGLT2 inhibitors in May 2015 that these inhibitors can 

potentially cause DKA and patients should stop taking the drug if DKA is diagnosed 

[382-384]. 

 In the early phase of type 1 and 2 diabetes, glomerular hyperfiltration is the 

proposed risk factor for the later development of albuminuria and diabetic 

nephropathy [385, 386]. The proportions of hyperfiltration cases are higher in type 1 
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diabetic patients (nearly 75%) as compared to type 2 [385]. In type 2 diabetic 

patients, the proportions of  hyperfiltration is more variable because of the difference 

in glycemic control, duration of diabetes, age and GFR measurement method used for 

obese patients [385]. At moderate levels, hyperglycemia induces a ‘primary’ increase 

in proximal tubular reabsorption by providing substrate for SGLTs or by causing the 

tubule to undergo hypertrophy [387].  

 The reduction in diabetic hyperfiltration, using selective and non-selective 

SGLT2 inhibitors has been shown in preclinical studies. Diabetic hyperfiltration was 

first shown by Vallon et al. [388] in 1999 in micropuncture studies in rats using local 

application of phlorizin into Bowman’s space and latterly by acute or chronic 

systemic application of selective SGLT2 inhibitors [389]. The inhibition of SGLT2, 

pharmacologically or genetically, suppressed the hyperfiltration on the whole-kidney 

level in mouse models of diabetes [390]. It is also found that in each case diabetic 

hyperfiltration suppression was not dependent on blood glucose, however, associated 

with an increase in NaCl concentration at the macula densa [391] and in hydrostatic 

pressure in Bowman’s space. In addition to this, SGLT2 inhibitors can reduce renal 

growth, albuminuria and inflammation mainly through their glucose-lowering effect 

similar to as observed in a genetic rodent model of type 1 diabetes [392]. For the 

rodent models of type 2 diabetes, there were similar results [357].  

 The clinical investigations carried out by Cherney and colleagues [393] are in 

consistency with the assumption that SGLT2 inhibitors lower hyperfiltration by 

attenuating an increased tone of SGLT2-mediated tubular hyperreabsorption. It is 

important to know other mechanism that may be added to the cardiovascular benefits 

of SGLT2 inhibitors in type 1 and type 2 diabetic patients besides lowering blood 

glucose levels with minimum risk of hypoglycemia and preserving kidney function. 

Taking in to consideration the prominent benefits related to heart failure, one 

explanation might be the reduction in blood pressure seen with these SGLT2 

inhibitors in addition to body fat and weight loss. Sotagliflozin has lowered the blood 

pressure in type 1 diabetic patients [376] and all the three trials in type 1 diabetic 

patients have shown significant weight loss compared to placebo [374-376]. The 
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glucose based osmotic diuresis (100-470 mL/day), natriuresis and weight loss are the 

underlying mechanism of this blood pressure-lowering effect [394, 395]. The 

sustained weight loss may be assumed primarily due to increased lipolysis resulting to 

a decrease in fat body content.  

 In SGLT2 inhibitors prescribed patients, because of the reduction in glucose, 

there is a primary shift from carbohydrate utilization to lipids which in turn leads 

eventual lipolysis and weight loss. The studies in rodents and clinical studies on type 

2 diabetic patients have revealed it [396, 397]. An early proximal tubule transporter 

Na
+
/H

+
-exchanger 3 (NHE3) has co-expressions with SGLT2 therefore, SGLT2 

inhibition may also inhibit NHE3 as proposed recently [357, 398]. The blood pressure 

lowering effect of SGLT2 may be attributed to the interaction between SGLT2 and 

NHE3. On the other hand, this interaction may moderately impair renal acid 

excretion. According to another potential mechanism which correlates to the fact that 

inhibition of SGLT2 shifts more glucose transport to SGLT1 in the late proximal 

tubule which in turn may reduce the oxygen tension in the outer medulla. It leads to 

enhanced erythropoietin release and red blood cell production that together with the 

diuretic effect, increases hematocrit and might facilitate oxygen delivery to the kidney 

and the heart [399]. There was also a small but statistically significant increase in 

hematocrit in type 1 diabetic patients treated with the SGLT2 inhibitor empagliflozin 

[393]. Thus, increase in ketogenesis caused by SGLT2 inhibitors may result 

detrimental effects in the form of DKA. On the other hand, additional energy 

substrates in the form of ketone bodies for the heart and kidney potentially provided 

by mild ketosis may be organ protective [400]. In this regard, more studies are 

desirable for better understanding of these issues and potential mechanisms and that 

may be applicable to both type 1 and type 2 diabetic patients. In summary, the 

pleiotropic effects of SGLT2 inhibitors are depicted in Figure 2.5.  

 The mechanisms that are currently assumed to contribute to the protective 

effect of SGLT2 inhibitors are also expected to take place in type 1 diabetic patients 

(Figure 2.5). 
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Figure 2.5: Proposed mechanisms of kidney and heart protection induced by SGLT2 

inhibition in both T1 and T2D patients.  

 The assessment of the risk-benefit relationship will be the key aspect for the 

use and potential approval of SGLT2 inhibitors in type 1 diabetic patients in near 

future.  Do the enhancements in HbA1c levels and the prospective favorable effects 

on the kidney and heart prevail over the risks of diabetic ketoacidosis that looks as the 

most serious and adverse happening identified in type 1 diabetic patients. 

  It was shown in previous studies that SGLT2 inhibitors improve death from 

cardiovascular causes, hospitalization for heart failure and death from any cause in 

type 2 diabetic patients. By far the effects of SGLT2 inhibitors  on cardiovascular  
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results have not yet been evaluated in type 1 diabetic patients and it requires a long-

term dedicated trials.  

  It may be summarized that SGLT2 inhibitors are effective glucose-lowering 

drugs in addition to insulin in type 1 diabetic patients and it was shown by high-

powered prospective, double-blind and placebo-controlled clinical trials. 

Additionally, SGLT2 inhibitors also have the potential to provide renal and 

cardioprotective benefits to type 1 diabetic patients by reducing blood glucose levels 

with low hypoglycemia risk, reduction in glomerular hyperfiltration, decrease in 

blood pressure and volume overload as well as weight loss. Although the inhibition of 

SGLT2 increases ketogenesis which may lead to DKA in susceptible type 1 diabetic 

patient particularly and in the presence of precipitating factors such as volume 

depletion. Furthermore, long-term trials and studies are desirable to better understand 

how to prevent DKA episodes in these patients, if the dual inhibition of SGLT2 and 

SGLT1 has any additional value to reveal whether the renal and cardiovascular 

benefits of SGLT2 inhibitors exposed in type 2 diabetic patients also happen in type 1 

diabetic patients and to determine whether these effects compensate the risk and 

danger of DKA. 

3.6. THE G PROTEIN-COUPLED RECEPTOR 40 (GPR40) AGONISTS 

 The antidiabetic drugs, in short term, have proved to be very effective in 

improved management of patients’ blood glucose levels. Due to the progressive 

nature of the disease and the unavoidable worsening of pancreatic beta-cell function, 

the glucose-lowering effects of these agents are not sustained for the long time. Thus, 

intense research efforts have been made on the discovery of novel therapeutic drugs 

which can preserve beta-cell function, restore metabolic homeostasis and ameliorate 

T2DM in a sustainable manner.  

 Free fatty acids (FFAs), being the structural components of biological 

membranes, are of great physiological importance to human body and these are 

important source of energy as well. As a biologically active molecule FFAs exert a 

wide variety of functions. The participation of FFAs in the regulation of metabolic 

homeostasis contributes in the development of many metabolic diseases such as 
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T2DM, obesity, and atherosclerosis. It was revealed in the deorphanization of several 

G-protein coupled receptors (GPCRs) that GPR40, GPR41, GPR43, GPR84 and 

GPR120 act as receptors for extracellular FFAs. These were having various carbon 

chain lengths and mediated a number of their physiological actions [401-405]. The 

activation of these receptors was dependent on the carbon chain length. GPR40 is 

activated by medium-chain and long-chain [406] and highly expressed in pancreatic 

β-cells and participates in the induction of glucose dependent insulin secretion 

(GDIS) by FFAs. As a result, it has received considerable attention as a potential 

therapeutic target for the management of T2DM [407-414]. 

Role in metabolic homeostasis  

 GPR40, also known as FFA receptor 1, is having expressions in both human 

and rodent tissues [409, 412] and belonging to the A class of GPCRs that are 

characterized by a seven-transmembrane domain structure spanning α-helices with 

three hydrophilic intracellular and three hydrophilic extracellular loops. Besides the 

high levels of expression in pancreatic beta cells, GPR40 is also expressed, although 

to a lesser extent, in other tissues such as the intestinal tract, brain and in monocytes 

[410, 412]. It can be activated by medium-chain and long-chain fatty acids, either 

saturated or unsaturated, in a dose-dependent manner [414, 417]. The promotion of 

the induction of GDIS by FFAs in pancreatic beta cells is the most important and 

well-documented function of GPR40 [416]. Studies suggested that among the FFA 

receptors, GPR40 is the primary mediator of this effect [415-417].  Furthermore, the 

role of GPR40 in insulin secretion has been established by using receptor antagonists 

such as GW1100 and that was shown to inhibit GPR40-mediated augmentation of 

insulin secretion from MIN6 cells [418]. A natural variant of GPR40 (Gly180Ser) 

blocks the sensing ability of β-cells to lipids and impairs fatty acid induced insulin 

secretion from pancreatic β-cells [408]. In this way, there is a demonstrated 

importance of GPR40 in FFA induced augmentation of insulin secretion from β-cells 

[419]. In the gastrointestinal tract, GPR40 is expressed in enteroendocrine cells 

including those which secrete the incretin hormones glucagon like peptide 1 (GLP-1)  
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and gastric inhibitor peptide (GIP). The incretin hormones GLP-1 and GIP are 

secreted from the gut upon ingestion of nutrients and stimulation of GDIS from 

pancreatic β-cells is their primary function. The secretion of these hormones is 

regulated by the activation of GPR40 [410, 420, 421]. It has also been reported that 

activation of GPR40 may enhance the secretion of GLP-1 in primary human colonic 

cultures [422]. Thus, GPR40 in addition to directly increasing GDIS from pancreatic 

beta cells, has an indirect effect on GDIS through the potentiation of GLP-1 from 

enteroendocrine cells of the gastrointestinal tract. The insulin release from pancreatic 

β-cells mediated through GPR40 is represented in Figure 2.6.  
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Figure 2.6: GPR40 mediated insulin release from pancreatic β-cells. 

GPR40 is ubiquitously expressed in various regions of human brain where it may 

facilitate a number of important physiological functions [404, 423-427] and the 

physiological role of GPR40 in brain has been reported in the literature [428-431]. It 

has implications in mediating trans-arachidonic acid induced neuro-microvascular 

degeneration in rat pups [432]. GPR40 may also be expressed in the tissues which are 

sensitive to insulin including liver, muscle and white adipose [433-441] but there is 

still no sufficient knowledge about its role in such tissues. The involvement in 
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potentiating insulin signaling in human and chicken hepatocytes where it has 

expressions has been reported [442-444]. To establish the function of GPR40 in 

insulin-sensitive tissues that are inevitable to preserve the metabolic health exhaustive 

studies are desirable.  

Emergence of GPR40 agonists 

 The fact that FFA-induced augmentation of insulin secretion from beta cells is 

mediated by GPR40 proved helpful in developing agonists of potential therapeutic 

value in T2DM. These agonists mimic the FFAs structurally, having the acidic head 

group and the hydrophobic tail. The low bioavailability and vulnerability to beta-

oxidation was the main concern in the compounds of first generation. Extensive 

efforts have been made to design novel GPR40 agonists by optimization of structures 

so that potential for beta-oxidation may be reduced, improve bioavailability keeping 

safety aspects in mind [407, 445-447]. As a result, a large number of GPR40 agonists 

have been synthesized and were tested (Table 2.4). Many of these appeared as to 

reiterate the actions of FFAs on pancreatic insulin secretion insulin secretion [418, 

448-450]. In various rodent models of T2DM, the administration of these molecules 

improve glucose tolerance and restore metabolic homeostasis, by augmenting insulin 

secretion from pancreatic beta cells [445, 446, 451-456]. The delayed onset of fasting 

hyperglycemia in Zucker diabetic fatty (ZDF) rats through increased insulin secretion 

and preservation of beta cell integrity has also shown by GPR40 agonists [455, 457]. 

TAK-875 and AMG 837 are the representative GPR40 agonists which reached 

clinical trials and it was shown that TAK-875 improves glycemic control in Type 2 

diabetic patients. 

Table 2.4: GPR 40 agonists and their physiological actions 
 

Agonist Physiological Actions References 

AM-1638 
Improved Glycemic Control In T2DM mice  

[454, 460] Stimulation of incretin (GIP and GLP-1) secretion 

from enteroendocrine cells 

AMG 837 

Improved Glycemic Control In T2DM mice  
[445-448, 

461] 
Stimulation of Insulin secretion from MIN6 cells 

Reduced plasma glucose and HbA1C levels in ob/ob 
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mice 

AS2034178 
Normalized Glycemic Control and improved β-cell 

function in ZDF rats  
[455] 

AS2575959 
Augmented GDIS in vitro and improved OGTT in 

diabetic mice 
[451] 

GW9508 

Augmented GDIS in vitro, 

[452, 462,  

463] 

Iimproved glycemic control  in HFD mice 

Inhibited lipopolysaccharide-induced interleukin-6 

secretion 

Reduction of hepatic lipid accumulation in HFD mice 

TUG-424 Improved Glucose tolerance in mice  [464] 

TUG-469 

Augmented GDIS in INS-1 cells 

[465-467] Improves glucose tolerance in pre-diabetic NZO mice 

Antagonized palmitate-induced β-cell death. 

TUG-770 Improved Glucose tolerance in HFD mice   

TAK-875 

Augmented GDIS  
[407, 457, 

468-473] 
Improved Glycemic control in rodent and human 

T2DM 
 

 However, phase III clinical trials with TAK-875 were terminated recently due 

to concerns of liver toxicity [458]. The nature of the liver-related toxicity using TAK-

875 is not clear and also that is it specific to TAK-875 or occurs with other agonists.   

GPR40 regulates metabolic homeostasis by potentiating GDIS from pancreatic beta 

cells. The role in the metabolic regulation of GPR40 and as a potential therapeutic 

target for T2DM is evident from the cell culture studies and rodent models of T2DM. 

No any study provided the evidence of hypoglycemic risk by GPR40 activation, 

rendering it as an attractive therapeutic approach. Further investigational studies must 

be aimed to have detailed insight on extra-pancreatic functions of GPR40, especially 

in those tissues that take part in maintaining metabolic homeostasis. Srivastava et al. 

has reported a high resolution structure of human GPR40 bound to TAK-875 [459]. 

The structural information, derived from the drug-receptor complex, may provide 

insight into lipid entry of the ligand and binding mode to receptor to amplify the 

agonist signal. It would be the potential useful in developing newer and more 

effective GPR40 agonists which might serve as efficient anti-diabetic agents devoid 

of any toxic side effects. 
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3.7. THE PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS 

        (PPARs) 

 An autoimmune disease T1D is caused by the dysfunction of pancreatic beta 

or by killing autoreactive T cells and resulting in to reduced insulin production and 

hyperglycemia [474, 475]. The increasing incidence of T1D varies geographically. 

Studies revealed that environmental factors including diet and microorganisms play a 

pivotal role in the pathology of T1D [476, 477]. It was supposed that there was 

almost complete loss of beta cells at the inception of the disease but recent studies 

have shown retention of insulin-positive islets, up to 40%, in new-onset patients of 

T1D [478-480]. Additionally, the isolated islets may regain their ability to secrete 

insulin when cultured in vitro in a nondiabetogenic environment [481]. Therefore, 

dysfunction of beta cell may play an important part in the pathology of T1D. The 

therapeutic approaches being used currently in T1D are having limited clinical 

efficacy and are mainly focused on to suppress the ongoing immune attack or to 

stimulate beta cell regeneration [482, 483]. Therefore, there is highly need of such 

strategies that might dampen the immune response and promote beta cell function. 

PPARs having anti-inflammatory properties both regulate beta cell biology and 

modulate the pancreatic lipidome hence may serve as an ideal target for such a 

strategy.  

 PPARs, mediators of peroxisome proliferation were identified in the 1990s 

[484] belonging to the nuclear receptor class II superfamily of transcription factors 

and regulate a wide variety of biological processes through modulating gene 

expression. Three isoforms, namely PPARα (NR1C1), PPARβ/δ (NR1C2), and 

PPARγ (NR1C3) have been identified in mammals that control predominately genes 

involved in lipid metabolism such as transport, storage, lipogenesis and fatty acid 

oxidation (FAO) [484]. PPARs are vital targets for metabolic disorders and multiple 

drugs targeting PPARα, which include fibrates (e.g. fenofibrate, bezafibrate and 

clofibrate) and PPARγ, which include thiazolidinediones (e.g. troglitazone, 

rosiglitazone, pioglitazone and ciglitazone) are being used for the treatment of 

hyperlipidemia and type 2 diabetes. Although, PPARs are present in the nucleus 
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constitutively but are dynamic as they shuttle between the nucleus and cytoplasm 

[485, 486] and this shuttling is regulated by binding of PPAR ligands to the C-

terminal domain. The induced conformational change, upon binding of ligands, leads 

to heterodimerization with members of the retinoid X receptor (RXR) family [487, 

488]. This complex binds to specific DNA sequences, termed as peroxisome 

proliferator response elements (PPRE) via the highly conserved zinc finger DNA-

binding domain in the N terminus [489]. Upon binding of ligands,   target gene 

transcription increases due to dissociation of corepressors and recruitment of 

coactivator proteins [490]. In the absence of ligands, PPARs as an alternative recruit 

corepressors which repress transcription of target genes [491]. 

 PPARs are involved in a ligand-dependent but PPRE-independent mechanism 

of gene repressions, termed as “transrepression” via interactions with other proteins 

such as NFκB, AP1, and STAT [492–494]. This mechanism generates and stabilizes 

corepressing complexes, which typically bind to and repress proinflammatory genes 

[488]. The pattern of expression of the PPAR isoforms differ although, they have a 

high structural and functional overlap. The isoform PPARα is highly expressed in 

tissues such as liver, kidney and adipose that are active metabolically. It is activated 

during fasting and is involved in controlling many physiological processes such as 

ketogenesis, lipoproteins, gluconeogenesis, amino acid catabolism, FAO and 

inflammatory responses [495]. 

 PPARβ/δ expressed ubiquitously and involved in FAO and its activation 

exerts an anti-inflammatory effect with reduced secretion of proinflammatory 

cytokines [496]. PPARγ is, having expressions in various tissues such as adipose, 

intestine, liver and kidney [497, 498] and involved in the regulation of fat cell 

differentiation, lipid storage and differentiation of monocytes into macrophages [499, 

500]. Because of immune regulatory functions of PPARs these are associated to 

various autoimmune diseases including multiple sclerosis [501], lupus erythematosus 

[502], autoimmune thyroiditis [503], Graves ophthalmopathy [504], rheumatoid 

arthritis [505], psoriasis [506] and Guillain-Barré [507]. PPARs may also serve as 

targets to treat chronic inflammatory diseases [487, 508].  
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 The role of PPAR isoforms as potent regulators of inflammation and in beta 

cell biology are depicted in Figure 2.7.   
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(a) The isoforms with a large degree of structural overlap, consisting of an N-terminal ligand-
independent transactivation domain (NTD). The DNA-binding domain (DBD) contains two zinc finger 

(Zn) domains, which bind to peroxisome proliferator response element (PPRE) sequences. The DBD is

linked via a hinge domain to the C terminal ligand-binding domain (LBD).
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(b) llustration of the biological role of PPARs. PPARs get heterodimerized with members of the retinoid 

X receptor (RXR) family. The isoforms are involved in various pathways; given in the figure are related 
to TIDM. c-jun: transcription factor c-Jun; GLUT2: glucose transporter 2; MafA: MAF bZIP 

transcription factor A; NF?B: nuclear Factor-kB; Nkx6.1: NK6 homeobox 1; Pdx-1: pancreatic and 

duodenal homeobox 1; Tfh: follicular helper T cells; Th1: T helper 1 cells; Th17: T helper 17 cells; Th2: 
T helper 2 cells; TNF?: tumor necrosis factor alpha; Treg: regulatory T cells.

 

Figure 2.7: Structure and functions of PPARs. 

The susceptibility of women than men to develop autoimmune diseases [509] may be 

linked to PPAR expression. It is found in mouse studies that male mice have higher 

expression of PPARα in T cells as compared to female mice and it was androgen 

sensitive [510]. The genetic predisposition to T1D may be attributed to the 

polymorphisms in PPARβ/δ and PPARγ promoter regions which affect the severity of 
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islet autoimmunity [511]. Moreover, PPARγ are also linked to the development of 

insulin resistance and type 2 diabetes [512]. 

PPARs and the Immune System 

 The pathogenesis of T1D relies on the interactions between beta cells and 

components of both of the innate and adaptive immune system [513]. Various 

immune cells have implications such as B cells and macrophages [514, 515], but T 

cells are primarily focused as defects in regulatory T cell (Treg) function develops 

T1D [475, 513]. The islet infiltrate populated predominantly with  CD8
+
 T cells 

followed by macrophages, CD4
+
 T cells, B cells, and plasma cells, revealed by the 

studies of postmortem pancreas samples from T1D patients [516]. The metabolic 

pathway for the production of ATP plays an important role in the regulation of 

functions of immune cell. The modulation of FAO through PPARs may induce 

immunological changes as these are expressed in various types of immune cells, such 

as macrophages, dendritic cells, B cells, and T cells, and all three isoforms have anti-

inflammatory activities [517]. 

 The major contributor to T1D is beta cell dysfunction rather than beta cell 

death and thus, to find possibilities of restoring the beta cell function became an 

appealing research area. Based on the the expressions of PPAR isoforms in pancreatic 

islets [518-520], PPARs are possible drug targets and emerged to have key roles in 

regulation of beta cell biology. PPARα is expressed in pancreatic islets and its 

expression in beta cell lines is glucose dependent [521]. In isolated rat islets and INS-

1E cells, high level of glucose represses PPARα [522]. The glucose-dependent 

upregulation of insulin expression might is due only to PPARα because glucose did 

not increase insulin expression in islets from PPARα knockout mice [523]. Although, 

in beta cells, PPARβ/δ present abundantly, but its role in beta cell biology is not fully 

recognized yet [519, 524]. It seems to have significance in pancreas development 

because pancreatic PPARβ/δ knockout mice showed increased number of pancreatic 

islets and a 2-fold increase in beta cell mass [525]. It was attributed to increased 

plasma insulin levels, hypoglycemia, and improved glucose tolerance, as isolated 

islets found to have  an increased second-phase  insulin secretion advocating that 
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 PPARβ/δ in the mature pancreas, it is a negative regulator of insulin secretion.  

 The role of PPARγ in insulin secretion and pancreas development is not fully 

clear yet. It was demonstrated that there was suppression in insulin secretion and 

proinsulin biosynthesis by activation or by overexpression of PPARγ [526-530]. 

PPARγ pancreatic knockout mice were found hyperglycemic in spite of having 

routine pancreas morphology [531]. In vivo studies in rats and mice revealed that 

long-term treatment of rosiglitazone or troglitazone (both PPARγ agonist) maintained 

beta cell proliferation and prevents the age-related loss of pancreatic mass [532-534]. 

Troglitazone also found to prevent age-related pancreatic abnormalities and increases 

in fasting insulin levels [535, 536]. There are also reports which showed that PPARγ 

agonists improve beta cell function and prevent mitochondrial alterations and diabetes 

in obese mice and rats [537]. Moreover, PPARγ activation protects against cytokine-

induced apoptosis [538], lipotoxicity [539] and human islet amyloid polypeptide 

toxicity [540, 541]. A feasible explanation of these findings at molecular level, that 

activation of PPARγ is associated with a reduced amount of reactive oxygen species 

by inhibiting iNOS through NFκB [538]. PPARγ activation also reduces islet ER 

stress in db/db mice and a diabetic ER stress mouse model [542, 543]. 

 Extensive studies revealed that PPAR agonists prevent diabetes in the non-

obese diabetic (NOD) mouse model of type 1 diabetes. A vast knowledge has been 

obtained regarding the identification of genetic and environmental risk factors as 

NOD mice have many autoantigens and biomarkers similar to human [544]. 

Experiments were carried out primarily on female NOD mice owing to nearly 80% 

diabetes incidence than in males [545]. Higher incidences in females may be 

correlated to the gender-specific changes in the PPARα and PPARγ expressions.   

 Female NOD mice had increased PPARα and decreased PPARγ expressions 

in macrophages and CD4
+
 lymphocytes as compared to male NOD mice [546]. Not 

only this but NOD mice have altered PPARα and PPARγ expression in CD4
+
 or 

CD8
+
 lymphocytes and macrophages than to non-obese diabetic-resistant (NOR) 

mice [547]. It was demonstrated that incidence of autoimmune diabetes have been 

reduced by activation of PPARα by fenofibrate or PPARγ by troglitazone and 
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rosiglitazone [548]. The treatment with fenofibrate, initiated after the onset of disease, 

could even reverse the diabetes in 46% of NOD female mice [511]. Additionally, 

troglitazone, following streptozotocin injections, prevents hyperglycemia and reduces 

insulitis in mice [549].  

 PPARs have shown regulation by various naturally occurring agonists also 

and several of them had been examined for their effect on autoimmune diabetes in 

NOD mice including epigallocatechin [550, 551], curcumin [552, 553], cannabidiol 

[554, 555], omega 3 fatty acids [556] and capsaicin [557, 558] and these induced 

PPAR activity and protect against autoimmune diabetes in NOD mice. The 

stimulation of PPARα by taurine in the diet during gestation and lactation reduces 

incidence of diabetes development in offspring of NOD mice [559, 560]. Similarly, a 

gluten-free diet leading to increase PPARα and PPARγ expression [561] was found to 

reduce incidence of diabetes in NOD mice [562] even after the exposure of the diet 

exclusively in utero [563, 564]. 

 The role of PPARs as regulators of lipid metabolism and inflammation, and in 

beta cell biology has been examined in numerous studies. However, the PPAR 

activation effects of PPAR activation on T cell survival, activation, and 

differentiation are beneficial in a T1D setting as evinced from the various studies, and 

studies of pancreas biology mostly conducted with relation to type 2 diabetes but to 

determine the precise role of PPARs in pathology of diabetes there is still scope for 

further extensive studies. 

 The promising beneficial effect on NOD mice of PPAR agonists advocated 

that modulation of PPARs might represent a novel treatment strategy targeting both 

the immune system and the pancreas. 

3.8. THE PROTEIN-TYROSINE PHOSPHATASE 1B (PTP1B) INHIBITORS  

 In the treatment of T2DM, insulin sensitizers, such as thiazolidinediones 

(TZDs or glitazones) are being used as effective drugs [565]. The enzyme, 

responsible for the dephosphorylation of insulin receptors, has been identified and 

that is known as called protein-tyrosine phosphatase 1B (PTP1B). Therefore, PTP1B 

inhibitors as insulin sensitizer agents might be promising anti-diabetic drugs [566]. 
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Increase in insulin sensitivity by PTP1B gene disruption in mouse models confirmed 

this hypothesis. Similar results were found when PTP1B antisense nucleotides 

suppressed PTP1B gene expression [567]. Protein tyrosine phosphatases (PTPs) 

represent a vast and structurally variable family of highly regulated enzymes and 

most of them have been proposed as advanced drug discovery targets.   

 The one of the well-established enzymes among PTPs is PTP1B [568-570] 

which was the first isolated member of the PTP superfamily, having links with insulin 

resistance, obesity and T2DM. It has been shown in various studies that PTP1B can 

negatively regulate insulin and leptin signaling pathways. In the insulin signaling 

pathway PTP1B dephosphorylates both the insulin receptor (IR) and its substrate 

IRS-1 [571, 572] while in the leptin pathway, it binds and dephosphorylates tyrosine 

kinase downstream of the Janus-Activated Kinase 2 (JAK2) leptin receptor [573]. In 

cell cultures, overexpression of PTP1B resulting to a decrease in the insulin-

stimulated phosphorylation of IR and IRS-1, although PTP1B raises insulin-initiated 

signaling level reduction [574, 575]. Quantitative analysis of trait loci and mutations 

in the human PTP1B gene propped up the hypothesis that the expression of PTP1B 

might contribute to diabetes and obesity [576]. PTP1B knockout mice, in in vivo 

studies, displayed elevated resistance to insulin sensitivity and obesity induced by 

high-fat diet [577, 578]. 

  Furthermore, other studies revealed that the tissue-specific PTP1B knockout 

mice that neuronal PTP1B controlled the leptin action, adiposity as well as body 

weight [579]. Thus, PTP1B inhibitors may be a highly promising approach in T2DM 

management and obesity amelioration. To conquer the lack of cellular activity of 

highly charged phosphonates, aryl carboxylic acids, including isoxazole [580], 

hydroxylpropionic [581], 2-oxalylamino benzoic (OBA) acids [582] and thiophene 

diacid [583] have been acknowledged as an alternative phosphotyrosine (pTyr) 

surrogates. Moreover, benzyl aryl α-ketoacid derivatives revealed, in a non-

competitive pattern, significant PTP1B inhibitory effects and that was targeted to 

conserved protein loop (WPD loop) open conformation [584]. The presence of a 

benzyl group in these bioactive molecules may increase PTP1B binding affinity and 
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increases the cell membrane permeability also due to hydrophobic nature. It is also 

suggested that might become an oncogene in breast cancer [569]. Thus, PTP1B 

inhibitors may be a therapeutic target for T2DM, obesity and cancer. The search for 

novel and promising natural inhibitors of PTP1B is getting much attention.  

 Nearly 300 natural products from different natural sources having PTP1B 

inhibitory capacity were isolated and characterized and many of them were of marine 

origin [585]. The first documented marine metabolite having PTP1B inhibitory 

activity was the sulfircin, a sesterterpene sulfate, isolated from deep-water sponge 

Ircinia (unknown species) [585]. Afterwards, marine sponges with diverse structures 

including polybromodiphenyl ether [586], sesquiterpenoids and sesquiterpene 

quinones [587] got consideration as precious sources of PTP1B inhibitors. Even so, 

the novel screening models of marine resource has persuaded the new studies with the 

aim to find potential of these marine resources as forthcoming anti-diabetic agents. 

Marine algae, seaweeds, soft corals, sponges and lichens exhibited PTP1B inhibitory 

effects among these models.  

In Vitro and In Vivo Concerns 

 The mechanism of regulation of insulin signaling regulation is the action of 

PTPs on IR themselves or their substrates. Studies, which were made to find the role 

of PTPs in insulin signaling pathways and diabetes using vanadium compounds, 

revealed reduction in serum glucose levels in both T1 and T2 diabetic animal models 

[588, 589]. Since, vanadium compounds show fundamental in vitro and in vivo 

insulinomimetic effects therefore these compounds on oral administration promote 

the normalization of serum glucose levels in T2DM rats, increasing glucose uptake 

[590]. Following the insulin and vanadate treatment the increased levels of hepatic 

cytosolic PTP activity in these rats were decreased resulting to normalization of 

serum glucose levels. Such findings may be explained through the inhibition of PTPs, 

which as a consequence improves cellular tyrosine phosphorylation [591]. Studies 

based on the structure of PTP1B enzyme in addition to IR recognition, identified 

JAK2 and tyrosine kinase 2 (TYK2) as potential PTP1B substrates. In PTP1B null 

fibroblasts, both kinases showed   hyperphosphorylation, upon stimulation through  
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interferons [592].  

 Further, this finding was attested in in vivo models where the negative 

regulation produced by PTP1B of leptin-stimulated JAK2 phosphorylation reduced 

leptin signaling. In PTP1B-deficient ob/ob mice, significant decrease in weight gain 

and increase in resting metabolic rates was observed on introducing null PTP1B 

mutation into leptin-deficient obese ob/ob mice. Fat pad analysis, further, suggested 

that variations in weight are due to decrease in adipose tissue. Therefore, loss in 

PTP1B in the absence of leptin may reduce weight gain with no any modification in 

food intake [593, 594]. Furthermore, due to leptin and feeding suppression, PTP1B-

deficient mice had shown an increased response to weight loss. A noticeable 

improvement in leptin-induced transcription factor STAT3 phosphorylation evinced 

in the hypothalami of these mice, hints that in PTP1B deficiency introduction of 

exogenous leptin would result in to increase in leptin sensitivity [593, 594]. It was 

confirmed actually, in substrate trapping trials using catalytically inactive PTP1B 

D181A, that when leptin-activated JAK2 is considered as a PTP1B substrate in 

PTP1B null mice, the reduction in leptin signaling is an obesity resistance 

mechanism.   

Human Concerns 

 Weight loss and improved insulin sensitivity in humans are closely related to 

decrease in PTP activity together with LAR and expression of PTP1B in adipose 

tissue [595]. It is noteworthy that PTP1B activity might not always related to its level 

of expression. In obese and diabetic subjects, the levels of PTP1B protein in 

abdominal adipose tissue showed a 3- to 5-fold increase and observed a remarkable 

decrease in the PTP1B activity per unit of PTP1B protein [596]. It is further observed 

that the marked rise in adipose tissue in obese individuals was not due to increased 

PTP1B activity but total cellular PTP. Additionally, the reduced insulin-stimulated 

glucose transport is due to increased in PTP activity, not by PTP1B activity, 

suggesting a tissue-specific role of PTP1B in glucose homeostasis [597]. Moreover, 

the mapping of the PTP1B locus to chromosome 20 in the region q13.1–q13.2 [598] 

provided genetic evidence linking PTP1B to diabetes and obesity in humans, because 
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this region is recognized as a quantitative trait locus linked to insulin and obesity. The 

role of PTP1B in insulin resistance has also been correlated to various 

polymorphisms. Thus, identification of new PTP inhibitors for diabetes and obesity 

control is demand of time.  

3.9. THE DIPEPTIDYL PEPTIDASE IV (DPP-IV) INHIBITORS 

 To maintain euglycaemia, the proper regulation of insulin secretion is must. 

The deteriotaed insulin secretion and the developed peripheral insulin resistance in 

T2D may result to development of hyperglycaemia. During the fasting state, the 

extent of secretaion of insulin is physiologically small in order to enhance the uptake 

of glucose by the peripheral tissues. The secretaion of insulin is get stimulated 

quickly and considerably after meal so that plasma glucose concentrations be 

maintained within a narrow physiological range [599]. The promotion in the post-

prandial stimulation of glucose is due not only to the post-prandial rise in glucose 

concentrations but also to the glucagon-like peptide-1 (GLP-1) and the gastric 

inhibitory polypeptide (GIP), which are gastrointestinal hormones. The stimulation of 

insulin secretion by GLP-1 and GIP is under hyperglycemic conditions and their 

contribuition in post-prandial insulin secretion is nearly 70%.  

 These are known as incretin hormones because of their importance 

physiologically, in the   stimulation of post-prandial insulin secretion [600-602]. The 

incretin effect illustrates the phenomenon that orally ingested glucose, rather than 

administered intravenously, results to a much higher response to insulin. The incretin 

effect is weakened and the post-prandial insulin secretion is also deteriorating in type 

2 diabetes [600, 603] and thus elevation of GLP-1 pharmacologically may restore 

insulin secretion [604]. GLP-1 stimulates the insulin secretion only under 

hyperglycaemic conditions therefore, there exits a negligible intrinsic risk of 

hypoglycaemia. The excessive stimulation of glucagon secretion in turn stimulates 

production of hepatic glucose production and therefore in T2D, GLP-1 is beneficial 

contributing to maintain euglycaemia. The inhibition of glucagon secretion under 

hyperglycaemic conditions by GLP-1 improves glycaemia. The biological or plasma 

half-life of this peptide hormone, GLP-1, is only a few minutes [602, 605] is because 
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of rapid enzymatic degradation of GLP-1 by the enzyme dipeptidyl peptidase IV 

(DPP-4) [606]. Orally active small molecules can inhibit DPP-4. 

 An increase in the concentration of endogeneous GLP-1 observed upon 

admistration of orally active small molecules as DPP-4 inhibitors [607]. Thus, for 

DPP-4, GLP-1 acts as a high affinity substrate ,i.e., “direct target” and the elevation 

of other substrates, besides GLP-1 by DPP-4 inhibition may also be contributory to 

the normalization of glycaemia in T2D and these substrates are considered as 

“indirect or off target” [608]. The physiology of the incretin hormones after food 

intake and the mode of action of the DPP-4 inhibitors are depicted in Figure 2.8 

[605].  

Increased glucose uptake by peripheral tissues

Decreased fasting- 

and postprandial

plasma glucose
Food intake Intestine

Release of active 

GLP-1 and GIP

ββββ-cells:Insulin 

(stimulated by GLP-1 and GIP)

αααα-cells: Glucagon

(inhibited by GLP-1)

Decreased hepatic glucose production

DPP-4

degraded 

GLP-1 and GIP

DPP-4 inhibitor

Pancreas

  

Figure 2.8: Action of DPP-4 inhibitors and physiology of the post-prandial regulation 

of glucose homoeostasis by the incretin system.  

 At present, for the treatment of T2D, DPP-4 inhibitors are the established 

class of oral antidiabetic agents. The first agent sitagliptin was introduced in 2006 

[609] followed by linagliptin, vildagliptin, saxagliptin, and allogliptin. Agents 

including anagliptin, gemigliptin, and teneligliptin are in use in Asian countries. DPP-
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4 inhibitors are being implemented in many national and international guidelines into 

the treatment algorithms of type 2 diabetes [610].  

 A homogenous class of molecules could not be assigned to the various DPP-4 

inhibitors as they interact differently with the active site of the enzyme molecule. 

Based on the findings of the characterization of the binding modes of most widely 

clinically used DPP-4 inhibitors, three different classes of these have been proposed. 

Classes of the various commonly used DPP-4 inhibitors and the binding domains of 

the various classes to specific areas of the DPP-4 molecule according to Tomovic et   

al. [611] and Nabeno et al. [612] have been depicted in Figure 2.9. 
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Figure 2.9: Classes of DPP-4 inhibitors with the numerous commonly used DPP-4 

inhibitors and the binding domains of the various classes to specific areas of the DPP-

4 molecule.  

 Class 1 comprises the molecules having interactions with the S1- and S2 

subsites of the active center and covalently binding with Ser630 of the DPP-4 
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molecule e.g. saxagliptin and vildagliptin. Binding with S1 and S2 but also interact 

with S1’ and/or S2’, such as alogliptin and linagliptin belong to class 2. Sitagliptin, 

anagliptin, gemigliptin, and teneligliptin constitute the class 3 of the DPP-4 inhibitors 

[611, 612].  

 The above mentioned orally active, rapidly absorbed DPP-4 inhibitors are 

suitable for once daily or twice daily administration, resulting to inhibition of 70-90% 

over 24 h. These are eliminated renally after little metabolization but linagliptin. 

Saxagliptin gets metabolized generating an active metabolite. Linagliptin is 

eliminated through a biliary route [608, 611, 613, 614]. 

Cardiovascular safety studies  

 Adverse safety signals of rosiglitazone raised the concern for novel diabetes 

medications regarding proven cardiovascular safety of these as compared to standard 

therapy under glycaemic equipoise. In 2008, The FDA established the “Clinical 

Guidance for Pharmaceutical Industry–Diabetes Mellitus—Evaluating Cardiovascular 

Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes”. Till now, four studies 

for cardiovascular safety studies on DPP-4 inhibitors have been completed and 

published and these are the Examination of Cardiovascular Outcomes with Alogliptin 

vs. Standard of  Care (EXAMINE) study for alogliptin [615, 616], the Saxagliptin 

Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus–

Thrombolysis in Myocardial Infarction 53 (Savor-TIMI-53) study for saxagliptin 

[617, 618], the Trial Evaluating Cardiovascular Outcomes With Sitagliptin (TECOS) 

study for sitagliptin [619, 620] and the last Cardiovascular safety and Clinical 

Outcome with Linagliptin (CARMELINA) study  for linagliptin [621, 622]. In all 

these studies, respective DPP-4 inhibitors have proved cardiovascular safety. These 

studies have shown a very homogenous result if the effects on the primary endpoint 

are compared. The results of the studies are heterogenous with respect to the 

secondary endpoint hospitalization due to heart failure as saxagliptin therapy was 

associated with a significant increase in the rate of hospitalization due to heart failure 

as compared to standard therapy [618].  

 However,  this  imbalance  did not  affect  the  primary  endpoint  and  the  
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occurrence rate was higher in those patients who have a previous history of heart 

failure and independent of renal function at study baseline [623-625]. A similar but 

not so significant indication was observed for alogliptin but for the other DPP-4 

inhibitors not as in the TECOS and CARMELINA study for sitagliptin and 

linagliptin, respectively [616, 620, 622, 623, 626]. This may be ascribed to that the 

differed cardiovascular disease status of the patients in the studies might have have 

influenced the outcome of heart failure outcome [623]. Thus, saxaglitpin treatment 

should be avoided consequently in patients with heart failure. The cardiovascular 

safety study, CAROLINA (CARdiovascular Outcome Trial of LINAgliptin vs. 

Glimepiride in Type 2 Diabetes) with linagliptin, comparing linagliptin treatment as 

add on therapy, to metformin directly and with a therapy with the sulfonylurea 

glimepiride will bring results later and may provide additional insights into the 

association of and mechanisms that links hypoglycaemic- with cardiovascular events 

[627, 628]. The demonstrated cardiovascular safety of the DPP-4 inhibitors in 

multiple studies is the basis for a positioning of the DPP-4 inhibitors as second-line 

therapy for the treatment of type 2 diabetes particularly when hypoglycaemia should 

strictly be avoided.  

Positioning in the treatment algorithm of type 2 Diabetes 

 The American Diabetes Association (ADA) and the European Association for 

the Study of Diabetes (EASD) have published a new joint position statement for the 

treatment of T2D in 2018 [629, 630]. In 2019, the ADA has adopted thses statements 

in annual recommendations “Standards of Medical Care in Diabetes” [631]. A patient 

centered and individualized treatment approach is used with the aim to prevent 

diabetes-related complications and to optimize quality of life in patients with T2D, is 

recommended in the treatment algorithm. 

  In these recommendations, the intervention in the life-style such as patient 

education and motivation, increase of physical activity and healthy eating, is still in 

the beginning and center of therapy as recommended previously by the ADA and 

EASD [632, 633] followed by with metformin therapy pharmacologically [629-633]. 

If therapeutic goals are not achieved with these measures, in that case certain patient 
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characteristics will determine the further recommended treatment options. Patients 

having established cardiovascular disease should receive an intensified 

pharmacological treatment with such an agent which has demonstrated benefit in 

earlier cardiovascular safety studies. A GLP-1 receptor agonist or SGLT-2 inhibitor 

with well characterized cardiovascular safety should be used in the patients with pre-

existing atherosclerotic cardiovascular disease (ASCVD). Patients with prevalent 

heart failure (HF) or chronic kidney disease (CKD) would   receive an intensified 

treatment with an SGLT-2 inhibitor with the respective evidence revealed by clinical 

studies due to the respective data [629-631].  

 DPP-4 inhibitors are recommended as one possible third-line therapy in 

addition to SGLT-2 inhibitors, thiazolidinediones or insulin in patients populated with 

both HF and CKD and with pre-existing cardiovascular disease if the therapeutic 

goals are unmet with the previous dual combination. The combination of DPP-4 

inhibitors and GLP-1 receptor agonists is restricted not because of safety issues, but 

due to lack of significant additional benefit expected clinically [629-631]. Saxagliptin 

as DPP-4 inhibitor contraindicated, in patients with pre-existing HF, on     

cardiovascular safety grounds in respective study because there was a significant 

increase of hospitalization for HF as secondary endpoint in the saxagliptin arm [618, 

624]. The summary of the ADA and EASD recommended treatment algorithm is 

given in Figure 2.10. 

 In conclusion, DPP-4 inhibitors are important oral antidiabetic agents placed 

as second-line therapy after failure of metformin as insulinotropic agents with 

minimum or no intrinsic risk of hypoglycaemia and body weight gain. Additionally, 

they inhibit glucagon secretion under hyperglycaemic conditions. Thus, these should 

be used mainly as a second-line therapy as add on to metformin in T2D patients with 

no pre-existing cardiovascular disease and as a goal to avoid hypoglycaemic events 

therapeutically.  

There are only a few reported treatment-limiting adverse effects of DPP-4 

inhibitors and these have shown cardiovascular safety. In impaired renal function 

patients, DPP-4 inhibitors have shown efficacy and safety profile. 
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Figure 2.10: Placement of DPP-4 inhibitors into the treatment algorithm according to 

the recommendations of the ADA and EASD.  

 Additonally, DPP-4 inhibitors may also be used in triple combination 

treatment such as either with metformin and SGLT-2 inhibitors or with metformin 

and insulin. A reduction in hypoglycaemic episodes, in combination with insulin, was 

shown in some studies because of a reduction in the insulin dose. As both the DPP-4 

inhibitors and GLP-1 receptor agonists, elevate “GLP-1” plasma concentrations 

therefore this combination is not recommended.   

 GLP-1 receptor agonists increase 8-10-fold whereas DPP-4 inhibitors lead to 

2-3 fold endogenous GLP-1 concentrations. An explorative study has not showed 

additive effects of sitagliptin and liraglutide as the GLP-1 receptor agonist and studies 

showing additional effects using shorter acting GLP-1 receptor agonists and DPP-4 

inhibitors are still needed [629-460, 634]. Not only the DPP-4 inhibitors as 

insulinotropic agents are replacing increasingly sulfonylureas but these might serve a 
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good therapeutic alternative to other treatment options including glitazones or 

glucosidase inhibitors as well. 

3.10. GLUCOKINASE ACTIVATORS (GKAs) 

 It is imperative in the context of globally rising prevalence of T2DM and a 

low proportion of patients achieving optimal glycaemic control, there exist a need for 

novel target ant treatment strategies. As a result, novel therapies targeting 

pathogenetic pathways associated with the gut, brain and kidney, which are 

researched more recently, has been introduced. At present, except metformin, there is 

no available class of glucose-lowering medications targeting directly or indirectly the 

enhanced hepatic glucose ouput caused by primary dysregulation of liver that is 

associated with T2DM [635]. This unmet need may be served by the activation of 

glucokinase (GK) which belongs to the hexokinase family. 

Glucose Homeostasis and GK 

 The nature of glucose homeostasis is albeit complex, it may be understood as 

a result of net effect of a two competitive hormones, they are the insulin and 

glucagon. Glucagon secures energy in the fasting state through maintaining 

euglycaemia and is secreted by α islet cells of the pancreas. It is achieved by two 

promoting two processes namely, gluconeogenesis ,i.e, which is the de novo glucose 

production from amino acids and fat and glycogenolysis ,i.e., glycogen breakdown 

and glucose release from the liver resulting to increase in the hepatic glucose output. 

The similar purpose may also be achieved by free fatty acids released from adipose 

tissue. 

 Contrary to this, a glucose-lowering effect in the fed state is produced by 

insulin which is secreted by β islet cells by utilizing glucose in the periphery 

including   skeletal muscle and adipose tissue and uptaking of hepatic glucose 

through switching liver into a “glycogen synthesis mode”. In parallel, the elevated 

glucose inhibits gluconeogenesis and glycogenolysis in the fed state [636]. GK acts as 

a “glucose-sensor” [637] in pancreatic cells reducing secretion of glucose-stimulated 

insulin and as a “gate-keeper” for glucose in hepatocytes through promoting uptake of 

hepatic glucose and glycogen synthesis and storage. GK on activation phosphorylates 
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glucose through magnesium adenosine triphosphate to glucose-6-phosphate (G6P) 

which in turn activates glycogen synthase and serves as a substrate for glycogen 

synthesis [638]. The biochemical properties and kinetics made GK to serve this dual 

role [639] because when glucose is in the physiological range the activity of GK is 

restrained due to the low affinity for glucose (K0.5 ~ 7-8 mmol/L) [640]. Additionally, 

GK is not inhibited by its end product secretion from the β-cells, the G6P, and having 

a sigmoidal saturation curve with glucose, following non-Michaelis–Menten kinetics, 

showed an inflection point close to the threshold of insulin secretion of 4-5 mmol/L.  

 Thus, graded responses for fluctuating glucose levels are ensured and 

glucokinase activity enters a plateau phase while glucose is near to the physiological 

threshold (5 mM) for glucose-stimulated insulin secretion [640]. In the liver, when 

glucose concentration is less than ~ 10 mM, GK remains as an inactive complex with 

the glucokinase regulatory protein (GKRP) which is its endogenous inhibitor. It is 

conferred that GK has lower affinity for hepatic glucose than to pancreatic β-cells and 

it gets activated only during the postprandial state to increase hepatic glucose uptake 

[641, 642]. In this way, at the hepatic cell, GKRP acts as a competitive inhibitor of 

glucose as it sequesters GK at low concentrations and and dissociaties from GK at 

increased glucose concentrations. 

 However, GK is also expressed in entero-endocrine cells, neurons, pancreatic 

α- and δ-cells, and cells in the anterior pituitary [643] but its major role in glucose 

homeostasis is in pancreatic β-cells and in hepatic cells. Based on the GK-mediated 

blood glucose lowering pathways it may be hypothesized that controlling of GK 

activity might represent a novel way to intervene in the glucose homeostasis as 

activation of GK results in to glucose lowering and its activity is low in T2DM 

patients [644]. Studies of a genetically discrete subgroup of diabetes and known as 

maturity-onset diabetes of the young type 2 (MODY2) has further reinforced this 

hypothesis. In MODY2, the people carrying inactivating heterozygous mutations in  

the glucokinase gene [645] manifested a benign form of hyperglycaemia usually and 

with low risk of associated microvascular complications [646] revealing a defective 

“glucose-sensing” ability [645]. On the other hand, presence of compound 
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heterozygosity or homozygosity may develop a severe form of permanent neonatal 

diabetes [647]. However, activating mutations in the glucokinase gene, leading to 

congenital hyperinsulinaemic hypoglycaemia with heterogenous phenotypic 

manifestations, do rarely occur [648].  

 The physiological role of GK in glucose homeostasis based on the in vivo 

evidence and experiments on mice and human cells [649-653], in addition to its 

feasibility of   activation, corroborates glucokinase as target in patients with T2DM. 

The gradual decline in β-cell mass in T2D patients leading to defective insulin 

secretion in addition to elevated hepatic glucose output represent two discrete and 

interrelated derangements pathophysiologically in T2DM and that might be addressed 

by pharmacological upregulation of GK activity potentially.  

GK Activators (GKAs) 

 After the introduction of the first agent of GKA in 2003 [654], various 

glucokinase activators have been designed and evaluated [655, 656]. These molecules 

facilitate activation of GK through binding to an allosteric site in the enzyme and 

stabilize a high-affinity conformation. This region of the enzyme is enriched with the 

majority of activating mutations. These may be classified according the chemical 

structure such as carbon-, urea-, 1,2,4-substituted aryl-, 1,3,5-substituted aryl-centred 

or other [640]. Another classification can be referred to the site of action such as 

hepatoselective and systemic. The hepatoselective GKAs act with or without 

disrupting the GK-GKRP interaction in hepatic cells [657, 658], which is contrary to 

systemic GKAs including piragliatin or dorzagliatin. In addition to another 

classification may be full or partial GKAs. Unfortunately, only a few GKAs have 

reached the phase of clinical trials. 

 Serious concerns about the efficacy and safety issues on use of older 

generation GKAs were raised such as risk of hypoglycaemia, induction of fatty liver, 

dyslipidaemia and diminished long term efficacy. In the early phases of GKAs 

development indeed, the over-stimulation of pancreatic GK and hepatic GK resulted 

into hypoglycaemia and dyslipidaemia, respectively were recognized as potential 

risks [639, 659]. A naturally occurring consequence of GK activation is the acute 
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insulin release, resulted from the exaggerated response to glucose, was also a 

reasonable risk. 

 The hypoglycaemic episodes were particularly occurred with piragliatin and 

MK-0941. This risk was addressed by the use of partial activators, which maintained 

a higer degree of dependency on glucose levels, so that the risk of activation at low 

glucose concentrations [655] might be minimized. Partial GKA PF-04937319 had 

shown lower hypoglycaemic risk [660]. As far as the  pathophysiological processes 

associated to GK activation leading to dyslipidaemia is concerned, it is hypothesized 

that  hepatic GK overstimulation resulting to excessive G6-P accumulation and that 

activates fructose 2,6-bisphosphate mediated glycolysis  which demonstrate a parallel 

to G6-P increase and in this the underlying mechanism is feedforward allosteric 

activation. This activation of glycolysis finally results into  the accumulation of 

acetyl- CoA converted from pyruvate which it turn results in increased  influx to fatty 

acids via malonyl-CoA and triglycerides or enhanced  de-novo hepatic lipogenesis 

[639]. It is in consistenacy with the first stage reported for nonalcoholic fatty liver 

disease (NAFLD) and that might range from simple steatosis to steatohepatitis [661]. 

Steatohepatitis on chronic exposure may develop the acute effect of 

hypertriglyceridemia as was noted with MK-0941 especially.  

 The increase in triglyceride levels are not so pronounced than the induced by a 

high-carbohydrate low-fat diet [639] and it remained still unwanted in patients with 

type 2 diabetes which are already prone to develop dyslipidaemia, hypertension and 

NAFLD [662]. It is interesting that the promising glucose-lowering efficly of GKA, 

which was noticed within the first few weeks of the introduction, was not prolonged 

over the course of the clinical studies. The earlier efficacy was declined rapidly 

through chronic exposure to the GKA agent and it was seen with both MK-0941 and 

AZD1656, GKA PF-04937319 and AMG 151 nearly four, three and one month,   

respectively. The reasons of this secondary failure are scantily understood. The study 

population with MK-0941 possibly may not have minimum critical β-cell mass left 

which is necessary for it to act as they have long-standing diabetes and were already 

following insulin treatment but this not in the case of AZD1656. It was suggested that 
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the failure of GKA was possibly caused by the hepatic de novo lipogenesis or plasma 

hyperlipidaemia, but it was not accepted universally [639].  

 In the case of hepatoselective TTP399, the glucose-lowering efficacy was 

marked   only after 3 months of treatment trail but no failure in earlier phase trails. 

Based on the histological reports in mouse models where double-strand breaks in the 

deoxyribonucleic acid were seen, hypothesized the toxicity of GKAs on β-cells that it 

is due to activation of the p53 tumour suppressor and leadind β-cell death, followed 

by genetic activation of β-cell glucokinase [640, 663].  

 Indeed, this activation resulted in a rapid unsustainable decrease in blood 

glucose that is in conformity to observed trajectory in human clinical studies. Agius 

[640] proposed another hypothesis focusing on the two opposite effects of GKA on 

hepatic GK. The first stage occurs when GK-induced insulin secretion mends any 

abnormality observed in insulin/glucagon ratio and promotes GK/GKRP dissociation 

and hepatic GK activation. The second effect is operative when G6P and down-

stream phosphate-ester intermediates of the glucose metabolism get accumulated to 

such an extent that repress GK gene [664] and thus offsetting any early stimulatory 

effect which may be induced by GKA [665] and renders their effect as clinically 

unimportant thus practical neutralization of them. Whatever be the causes for 

diminishing efficacy of GKA eventually it may inhibit development, maturation and 

approval of future GKA agents further. 

3.11. THE GLUCAGON-LIKE PEPTIDE 1 (GLP-1) RECEPTOR AGONISTS 

 The incretin system, in recent years, has become an an important and useful 

target in the treatment of T2DM [666]. These are the hormones produced in a 

response to oral intake of nutrients by the intestinal mucosa which increase the 

glucose-stimulated insulin secretion and lower levels of blood glucose. Futhrmore, 

when the glucose levels are near to normal, they reduce insulin release also. It has 

been revealed that  secretion of insulin is more in response to oral glucose ingestion 

as compared to an isoglycemic intravenous glucose infusion and this phenomenon is 

known as “the incretin effect” [667, 668]. The glucose-dependent insulinotropic 

polypeptide and glucagon-like peptide 1 (GLP-1) are the two identified incretin 
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hormones [669]. The interst in GLP-1 particularly is owed to its glucose-lowering 

effects [670] and its ability to slow gastric emptying and suppress secretion of 

glucagon as well [666]. T2D patients have reduced incretin effect [671].  

 The latest understanding of this deficit suggested that it is related to 

deterioration of the GLP-1 effect having impaired capacity of insulin secretion and 

enhanced insulin resistance, and hyperglycemia, that may resulting in to a decrease in 

GLP-1 receptor expression and lead to GLP-1 resistance [672]. The stimulation of 

GLP-1 receptors on administration of GLP-1 receptor agonists enhances the insulin 

secretion in response to oral and intravenous glucose. The similar extents of insulin 

secretion in both the cases means there is no change in the magnitude of the incretin 

effect [673]. Numerous GLP-1 receptor agonists have now been approved for 

treatment of type 2 diabetes. 

Pharmacological Effects of GLP-1 

In the setting of T2DM, GLP-1 has shown a number of potentially beneficial effects 

[674]. These are shown in Figure 5.11. In T2D patients, the intravenously 

administration of exogenous GLP-1 have shown a reduction in plasma glucose 

concentrations to the normal fasting range even in the patients having not enough 

response to oral antihyperglycemic drugs [675]. The effects of exogenous GLP-1 seen 

after the administration to T2DM patients [676] include  decreased glucagon 

concentrations, improved insulin sensitivity, decreased A1C, slowed gastric 

emptying, increased satiety, decreased free fatty acid concentrations and decreased 

body weight. Due to its very short half-life and rapid degradation, native GLP-1s 

have limited therapeutical utility and it was overcome by the further development of 

degradation resistant GLP-1 receptor agonists [677]. 

Overview of GLP-1 Receptor Agonists 

 More than 10 years ago, the first agent in the class exenatide was approved 

and thereafter a number of GLP-1 receptor agonists are available including the 

exenatide (BID) (short-acting agents, twice daily) [678], liraglutide (intermediate-

acting agents, administered once daily) [679] and exenatide QW (long-acting agents, 

administered once weekly) [680], albiglutide [681] and dulaglutide [682]. 
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Figure 2.11: Various actions of GLP-1 in target tissues. 

 A recently approved and administered once daily is lixisenatide [683]. Each of 

these agents, have a certain half life to show its effects in plasma concentrations. The 

extended-release formulation of exenatide contained the same active compound as 

was in exenatide BID, which is encapsulated in microspheres to degrade slowly and 

continuous release of the drug is provided by them. The the primary goal of 

antihyperglycemic therapy is the glycemic control. It was indicated from the results 

of a meta-analysis of clinical studies that GLP-1 receptor agonists reduced the A1C 

from baseline versus placebo [684]. Studies also reported that mean changes in A1C 



96 

 

are pronounced on using the GLP-1 receptor agonists alone or in combination with 

oral antihyperglycemic therapies [678-683].  

 Acoording to the recent update to the American Heart Association/American 

Diabetes Association (AHA/ADA) guidelines regarding prevention of cardiovascular 

disease (CVD) in T2DM adults, weight management is a key component and 

suggested that the health care providers must consider using antihyperglycemic drugs 

which produce weight loss such as the GLP-1 receptor agonists [685]. In 2015, the 

clinical practice guidelines of American Association of Clinical Endocrinologists 

(AACE) and American College of Endocrinology (ACE) also focused the importance 

of weight management in T2D patients and urged the use of antihyperglycemic agents 

considering weight loss or at least with a neutral effect on body weight [686]. In 

clinical trials meant to evaluate GLP-1 receptor agonists, body weight reduction was 

commonly observed in T2D patients. Mean reductions in body weight in randomized 

controlled trials of GLP-1 receptor agonists (exenatide BID and QW and liraglutide) 

in overweight or obese T2D patients in a mixed-treatment comparison meta-analysis 

were greater than with placebo [680-682]. Weight loss on using GLP-1 receptor 

agonists is thought to be arisen as a result of slowed gastric emptying and increased 

satiety. Obese patients with accelerated gastric emptying following 30 days exenatide 

BID treatment led to slowed gastric emptying and a modest reduction in caloric 

intake than to placebo [687]. 

Cardiovascular Effects 

 The cardiovascular effects of antihyperglycemic treatments are of particular 

interest as the T2D peoples are at increased risk for cardiovascular complications. 

Morever,  in 2008, FDA recommendations broadcasted a call for evidence that T2D 

therapies do not increase the risk of cardiovascular events like myocardial infarction 

[688] therefore, it is necessitated to assess cardiovascular outcomes in clinical trials 

of new antihyperglycemic agents  and at present the intensified multifactorial 

treatment to therapeutic goals such as targeting glycemic control, blood pressure, 

lipid levels and renal function are associated with reduced cardiovascular and 

microvascular complications [689]. It is indicated by a number of findings that GLP-1 
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receptor agonists do not worsen CVD and may serve potential cardiovascular benefits 

in T2D patients [690].  

 A meta-analysis of 25 studies pertaining to GLP-1 receptor agonists has 

shown that there was no increase in major adverse cardiovascular events such as 

cardiovascular death, nonfatal myocardial infarction, stroke, and acute coronary 

syndromes and/or heart failure with a significant reduction versus placebo [691]. A 

retrospective analysis revealed that T2D patients receiving exenatide were less likely 

to have a CVD event than patients receiving other glucose-lowering treatments even 

though there was a prevalent previous ischemic heart disease, obesity, 

hyperlipidemia, hypertension, and other comorbidities at baseline [692]. The findings 

of ELIXA (Evaluation of Lixisenatide in Acute Coronary Syndrome) outcomes study 

were neutral with regard to cardiovascular outcomes [693]. On the other hand, 

liraglutide demonstrated advantages versus placebo in the LEADER (Liraglutide 

Effect and Action in Diabetes: Evaluation of cardiovascular outcome Results) trial 

[694]. Other intensified cardiovascular outcomes trials are also being conducted to 

evaluate the cardiovascular safety of exenatide QW, (EXenatide Study of 

Cardiovascular Event Lowering, EXSCEL) [695], albiglutide (HARMONY 

Outcomes) and dulaglutide (REsearching Cardiovascular Events with a Weekly 

INcretin in Diabetes, REWIND).  

Place in Therapy 

 According to the AACE/ACE and ADA algorithms for the treatment of 

diabetes for glycemic control [696, 697] in the patients who are unable to achieve 

their A1C target following 3 months of metformin therapy, GLP-1 receptor agonists 

are recommended as add-on therapy. In the patients who cannot tolerate or are 

contraindicated for metformin, GLP-1 receptor agonists are the recommended first-

line therapy also, as a substitute to metformin. GLP-1 receptor agonists stimulate 

release of insulin and suppress glucagon secretion only at elevated blood glucose 

concentrations, thus these are well suited for early use in T2D with low risk of 

hypoglycemia [698]. As dual therapy for patients who do not achieve A1C goals with 

metformin alone these are recommended in combination with metformin.  
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 Patients with persistent hyperglycemia and overweight patients trying to 

control their weight as a triple therapy GLP-1 receptor agonists might be combined 

with metformin and a sodium-glucose cotransporter 2 inhibitor. In addition to this, the 

use of bolus (mealtime) insulin may be delayed by the incretin use with basal insulin 

leads to reduced risk of hypoglycemia. This simplified regimen is beneficiary in 

reducing the need for matching mealtime insulin to specific carbohydrate ratios and 

thus helps to mitigate the weight gain often noted using insulin, also.  

 Since the beginning of the GLP-1 therapeutics, the use of of GLP-1R agonists 

for the treatment of T2D and obesity is emergent. The demonstration that these agents 

reduce myocardial infarction, stroke and cardiovascular death unlike insulin with a 

favorable benefit/risk profile has broadened their clinical use and more enhanced 

interest in mechanisms of GLP-1 action. The declined long-term safety in GLP-1-

treated subjects with obesity at high risk for cardiovascular disease remained an 

important face up to for expansion of GLP-1 therapeutics in non-diabetic peoples.   

 A better understanding of how nutrients, bacterial metabolites, and microbial 

populations control GLP-1 secretion might enable the development of GLP-1 

secretagogues which are more potent and better tolerated than metformin. 

Furthermore, multiple new GLP-1-based therapeutic agents, either they be small 

molecules and peptides or larger hybrid proteins, keep on to be developed. Hence, for 

scientists and healthcare providers which are focused on the treatment of diabetes, 

obesity, and related complications further delineation of the mechanisms of action of 

GLP-1 be continued to have immediate translational relevance.  

 The world’s most social health shocking disease is the diabetes mellitus (DM), 

not only due to its high occurrence but for its chronic sequels derived at inadequate 

glycemic control. Almost ninety percent of the diabetic population is together with 

this type 2 diabetes mellitus (T2DM) and keeps on rising all around the occidental 

world prevalently as an upshot of population aging and increasing of obesity and 

sedentary life styles. The most frequent endocrine-metabolic diseases, T2DM and 

obesity, are characterized through insulin resistance, defects in insulin secretion 



99 

 

which ultimately lead to a high hepatic production of glucose. The management of 

these patients therapeutically must include alteration in their life styles, adequate diet 

and exercise and if not controlled properly in that case pharmacological methods 

might be applied. A wide range of numerous therapeutic approaches are being 

employed to tackle the multifactorial nature of T2DM. The inclusion of 

cardiovascular parameters in these approaches in addition to the growing awareness 

of the importance of dealing with cardiometabolic disease including allied liver 

diseases, in toto, means that the near future holds great potential promise for the 

identification of novel therapeutic strategies for T2DM and its associated diseases. 
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CHAPTER 3 

QSAR STUDIES ON DPP-4 INHIBITORS  

1. INTRODUCTION  

 Therapeutics based on Glucogon-like peptide-1 (GLP-1
a
) is among the 

novel and promising targets to cure type 2 diabetes [699-701]. The active and 

natural form of GLP-1, the incretin hormone GLP-1 (7-36), is secreted from 

intestinal L-cells after the intake of meals. The stimulation of insulin secretion, 

inhibition of glucogon release, delay in gastric emptying and promotion of β-cell 

trophism in intestinal L-cells are advantageous to glucose homeostasis in both the 

animal models and human [702, 703]. Studies revealed that GLP-1 levels are 

noticeably reduced in type 2 diabetics and exogenous infusion of it may lead to 

normal insulin response to glucose [704-706] and this fact is the basis for GLP-1 

and its analogeus as novel treatments of type 2 diabetes. One such example of a 

GLP-1 analogue is exenatide [707, 708]. Half-maximal effective concentration of 

10 pM of the most potent incretin hormone, GLP-1 (7-36), is required to show its 

effects on pancreatic β-cells [709].  

 The biological functions of GLP-1 (7-36) are exerted through circulation 

and binding to the GLP-1 receptor that is highly expressed in pancreatic β-cells. 

After secretion GLP-1 (7-36) is rapidly degraded by DPP4 (EC 3.4.14.5) to afford 

inactive GLP-1 (9-36) under normal physiological conditions. The apparent half-

life for GLP-1 (7-36) in this quick inactivation process is 60-90s. It is evinced that 

due to this natural degradation mechanism less than 50% of released active GLP-1 

(7-36) can reach circulation [710]. Thus, it is apparent that a DPP-4 inhibitor can 

prevent degradation of and lead to potentiation of GLP-1 and further improve 

glucose and insulin homeostasis [711, 712]. 

 DPP-4, ubiquitously expressed throughout the body, is a nonclassical and 

sequence-specific serine protease. Membrane-bound DPP-4 is highly expressed in 

the endothelium of the capillary bed in close proximity to intestinal L-cells where 

secretion of GLP-1 takes place. The other form which circulates in plasma is 
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soluble form of DPP-4 plays a little role in the cleavage of GLP-1 [713, 714]. 

Vildagliptin [715], sitagliptin [716], saxagliptin [717] and alogliptin [718] are 

examples of small molecule DPP-4 inhibitors which have demonstrated   ability to 

lower blood glucose and HbA1c levels and to improve glucose tolerance in type 2 

diabetic patients [719].  

2. MODELING STUDIES  

2.1. THE IMIDAZOLOPYRIMIDINE AMIDES  

 Several novel series of azolopyrimidine amines, containing an aromatic or 

heteroaromatic group on the azolo ring, as potent and selective DPP-4 inhibitors 

were reported in view of medicinal chemistry efforts to discover novel scaffolds 

[720]. The substitution of aromatic or heteroaromatic group on the azolo ring in 

these compounds showed enhancement in the binding affinity to DPP-4 but 

displayed high levels of the human ether-à-go-go related gene (hERG) and 

sodium channel inhibition. As an attempt to minimize undesired hERG and 

sodium channel activities a novel series of imidazolopyrimidine amides as a 

highly potent and selective class of DPP4 inhibitors has been reported by Meng et 

al. [721]. The general structures of these analogues are shown in Figure 3.1. 
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Figure 3.1: General structures of imidazolopyrimidine derivatives 

The structural variations along with their reported in vitro human DPP-4 

inhibition activity in terms of Ki, and expressed as pKi on a molar basis are 

mentioned in Table 3.1.  
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Table 3.1: Structural variations and DPP-4 binding affinities of 

imidazolopyrimidine amides. 

 

Cpd. R 

pKi(M)
a 

Obsd
b
. 

 Calculated 

 Eq. 

(7) 

 Eq. 

(8)  

 Eq. 

(9) 

 Eq. 

(10) 

 
PLS 

1 Racemic 9.15  8.98  8.94  9.01  9.06  8.99 

2 Chiral 7.93  8.08  8.03  7.93  8.10  7.83 

3
c
 OEt (chiral) 9.40  8.98  8.94  9.01  9.06  8.99 

4 
N

 
8.62  8.81  8.80  8.77  8.64  8.94 

5 N
 

8.54  8.45  8.46  8.43  8.68  8.75 

6 
O

N

 

8.66  8.47  8.68  8.50  8.32  8.50 

7
c
 

O

NH

 

8.51  8.40  8.42  8.52  8.29  8.44 

8 N

NH

 

8.30  8.26  8.30  8.18  8.26  8.22 

9 N
NH

 

8.06  8.30  8.33  8.33  8.28  8.14 

10 
HN

N
O

 

9.00  8.82  8.95  8.95  8.72  8.81 

11 
N

OMe

 

8.51  8.52  8.53  8.63  8.32  8.59 

12 
N

H
N

MeO2S

 

9.70  9.52  9.55  9.49  9.59  9.56 

13 N

N

MeO2S  

9.30  9.37  9.41  9.33  9.42  9.39 
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14 
MeO2S

N

 

9.52  9.70  9.54  9.76  9.56  9.56 

15 N N
NH

 

9.05  8.75  8.73  8.81  8.74  8.87 

16 
N

S
NH

 

8.18  8.43  8.25  8.43  8.56  8.21 

17
c
 

O

N NH

 

8.70  8.54  8.49  8.91  8.65  8.71 

18 
O

N

 

9.22  9.22  9.19  9.01  8.86  9.10 

19 N N
NH

 
8.74  8.70  8.68  8.88  8.72  8.82 

20 O N
NH

 
8.42  8.73  8.91  8.59  8.58  8.59 

21
c
 

N

N

 

8.59  8.49  8.67  8.63  8.40  8.58 

22 N N

Et

NH
 

8.96  8.75  8.73  8.62  9.03  8.94 

23 N N
NH

 

8.70  8.74  8.93  8.53  8.97  8.83 

24 
S NH

 
8.49  8.44  8.27  8.48  8.56  8.51 

25
c
 

N

N

 

9.15  9.18  8.98  9.04  8.78  8.85 

26 
N

N

 

8.59  8.46  8.65  8.61  8.47  8.60 

27
c
 

O NH

 
8.4  8.75  8.56  8.69  8.67  8.50 

28 
O N

 
8.52  8.70  8.51  8.86  8.64  8.56 

29 N

S
NH

N

 

8.30  8.56  8.55  8.32  8.67  8.27 
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30 
HN

N

NH

 

8.33  8.06  8.22  8.38  8.30  8.48 

31 N

N

 

8.27  8.57  8.40  8.61  8.30  8.30 

32 
N

NH

 

8.82  8.68  8.67  8.68  8.83  8.81 

33 
N NH

 

8.85  8.68  8.50  8.61  8.55  8.56 

34
c
 

N

NH

 

8.89  8.68  8.67  8.68  8.76  8.77 

a
On molar basis; 

b
Taken from reference [721]; 

c
Compounds in test set.   

2.1.1. RESULTS AND DISCUSSION 

2.1.1.1. QSAR RESULTS 

 For the compounds in Table 3.1, a total number of 479 descriptors 

belonging to 0D- to 2D- classes of DRAGON have been computed and were 

subjected to CP-MLR analysis. All the 34 compounds of data set were further 

divided into training-set and test-set. Seven compounds (nearly 20% of total 

population) have been selected for test-set. The selected test-set was then used for 

external validation of models derived from remaining twenty seven compounds in 

the training-set. The squared correlation coefficient between the observed and 

predicted values of compounds from test-set, r
2

Test, was calculated to explain the 

fraction of explained variance in the test-set which is not part of regression/model 

derivation. It is a measure of goodness of the derived model equation. A high r
2

Test 

value is always good. But considering the stringency of test-set procedures, often 

r
2

Test values in the range of 0.5 to 0.6 are regarded as logical models. Following 

the strategy to explore only predictive models, CP-MLR resulted, one model in 

three descriptors, five models in four descriptors and sixteen models in five 

descriptors at upper limit of filter-1. The highest significant of them, in statistical 

sense, are given through Equations (3.1) to (3.10): 
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pKi = 7.583 + 1.556(0.241)Ms + 0.716(0.215)BELe5 + 0.729 (0.241)MATS2p 

n = 27, r = 0.812, s = 0.271, F = 14.904, q
2

LOO = 0.515, 

q
2

L5O = 0.504, r
2

Test = 0.125           (3.1) 

pKi = 7.267 + 1.503(0.229)Ms + 0.300(0.121)PJI2 + 0.985(0.256)BELv3  

+ 0.738(0.223)MATS2p 

n = 27, r = 0.844, s = 0.254, F = 13.731, q
2

LOO = 0.565,  

q
2

L5O = 0.516, r
2

Test= 0.632                                                                               (3.2) 

pKi = 8.043 – 0.677(0.253)Mv + 2.308(0.381)Ms – 0.880(0.255)nDB  

+ 0.635(0.248)BELv3 

n = 27, r = 0.836, s = 0.260, F = 12.856, q
2

LOO = 0.524, 

 q
2

L5O = 0.537, r
2

Test = 0.527                                                                              (3.3) 

pKi = 7.935 + 2.678(0.448)Ms – 0.806(0.249)nDB  – 0.619 (0.246)IC1 

+ 0.575(0.199)BELe5 

n = 27, r = 0.832, s = 0.263, F = 12.380, q
2

LOO = 0.507, 

 q
2

L5O = 0.594, r
2

Test = 0.525                                                                             (3.4) 

pKi = 8.031 + 1.239(0.235)Ms + 0.315(0.127)PJI2 + 0.991(0.272)BELv3 

– 0.679(0.232)GATS2v  

n = 27, r = 0.831, s = 0.264, F = 12.295, q
2

LOO = 0.501,  

q
2

L5O = 0.513, r
2

Test = 0.501                                                                               (3.5) 

pKi = 8.080 + 1.325(0.227)MAXDN – 0.556(0.219)BELm8 

+ 0.706(0.345)BELv3 + 0.957(0.256)MATS2p  

n = 27, r = 0.821, s = 0.270, F = 11.449, q
2

LOO = 0.503,  

q
2

L5O = 0.525, r
2

Test = 0.513                                                                                 (3.6) 

pKi = 7.360 + 1.914(0.288)Ms – 0.744(0.185)nDB + 0.214(0.101)PJI2  

+ 1.110(0.215)BELv3 + 0.765(0.192)JGI2 

n = 27, r = 0.901, s = 0.210, F = 18.170, q
2

LOO = 0.651, 

 q
2

L5O = 0.600, r
2

Test = 0.548                                                                                (3.7) 
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pKi = 7.644 + 1.753(0.277)Ms – 0.774(0.188)nDB + 1.059(0.211)BELv3  

+ 0.729(0.196)JGI2 – 0.357(0.171)C-028 

n = 27, r = 0.900, s = 0.211, F = 18.042, q
2

LOO = 0.667, 

 q
2

L5O = 0.690, r
2

Test= 0.579                                                                                (3.8) 

pKi = 6.629 + 1.573(0.194)Ms + 0.331(0.102)PJI2 + 0.798(0.249)BEHv1  

+ 0.705(0.232)BELv3 + 0.603(0.191)MATS2p 

n = 27, r = 0.898, s = 0.213, F = 17.656, q
2

LOO = 0.644,  

q
2

L5O = 0.696, r
2

Test= 0.616                                                                               (3.9) 

pKi = 8.310 + 1.327(0.208)Ms + 0.265(0.107)PJI2 + 0.669(0.172)BELe5 

– 0.723(0.208)MATS6e – 0.771(0.199)nCrHR  

n = 27, r = 0.883, s = 0.227, F = 14.972, q
2

LOO = 0.569, 

 q
2

L5O = 0.550, r
2

Test= 0.511                                                                           (3.10) 

where n and F represent respectively the number of data points and the F-ratio 

between the variances of calculated and observed activities. The data within the 

parentheses are the standard errors associated with regression coefficients. In all 

above equations, the F-values remained significant at 99% level. The indices 

q
2

LOO and q
2

L5O (> 0.5) have accounted for their internal robustness. For all above 

models except equation (3.1) the r
2

Test values, obtained greater than 0.5, specified 

that the selected test-set is fully accountable for their external validation. The 

descriptors, in all above models, have been scaled between the intervals 0 to 1 to 

ensure that a descriptor will not dominate simply because it has larger or smaller 

pre-scaled value compared to the other descriptors. In this way, the scaled 

descriptors would have equal potential to influence the QSAR models. The signs 

of the regression coefficients have indicated the direction of influence of 

explanatory variables in above models. The positive regression coefficient 

associated to a descriptor will augment the activity profile of a compound while 

the negative coefficient will cause detrimental effect to it.  



 

 

144 

 

Though Equations (3.1) to (3.10) emerged as significant predictive models but 

Equations (3.7) to (3.10) remained statistically more efficient. The later four 

models, involving five descriptors in each, could estimate up to 81.22 percent of 

variance in observed activity of the compounds. In fact, a total number of sixteen 

such models, sharing 19 descriptors among them, have been obtained through CP-

MLR and the most significant four of them have been documented through 

Equation (3.7) to (3.10). The shared 19 descriptors along with their brief 

description, average regression coefficients and total incidences are given in 

Table 3.2. 

Table 3.2: Identified descriptors
a
 along with their physical meaning, average 

regression coefficient and incidence
b
, in modeling the DPP-4 binding affinity. 

S. 

No. 
Descriptor  Descriptor class Physical meaning 

Average 

regression 

coefficient 

(incidence) 

1 Ms Constitutional  Mean electrotopological state 1.835(15) 

2 nDB Constitutional Number of double bonds -0.685(11) 

3 HNar Topological Narumi harmonic topological 

index 

-1.304(2) 

4 PJI2 Topological 2D Petitijean shape index 0.280(7) 

5 IC1 Topological information content index of 

neighborhood symmetry of 1-

order 

-0.585(1) 

6 BELm8 BCUT  Lowest eigenvalue n.8 of 

Burden matrix/ weighted by 

atomic masses  

-0.479(1) 

7 BEHv1 BCUT  Highest eigenvalue n.1 of 

Burden matrix/ weighted by 

atomic van der Waals  volumes 

0.989(2) 

8 BELv3 BCUT  lowest eigenvalue n.3 of 

Burden matrix/ weighted by 

atomic van der Waals  volumes 

0.935(12) 

9 BELe5 BCUT  lowest eigenvalue n.5 of 

Burden matrix/ weighted by 

atomic Sanderson 

electronegativities 

0.653(6) 

10 JGI2 Galvez topological 

charge indices 

Mean topological charge index 

of order 2 

0.747(2) 

11 MATS5e 2D autocorrelations Moran autocorrelation of lag-5/ 

weighted by atomic Sanderson 

-0.597(1) 
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electronegativities 

12 MATS6e 2D autocorrelations Moran autocorrelation of lag-6/ 

weighted by atomic Sanderson 

electronegativities 

-0.594(2) 

13 MATS2p 2D autocorrelations Moran autocorrelation of lag-2/ 

weighted by atomic 

polarizabilities 

0.694(5) 

14 GATS2v 2D autocorrelations Geary autocorrelation of lag-2/ 

weighted by atomic van der 

Waals  volumes 

-0.794(1) 

15 nCp Functional 
Number of total primary C 

(sp3) 

0.274(1), -

0.612(1) 

16 nCrHR Functional Number of ring tertiary C(sp3) -0.771(1) 

17 nNR2 Functional Number of tertiary aliphatic 

amines 

-0.702(1) 

18 C-028 Atom-centered 

fragments 
R--CR--X 

-0.464(6) 

19 C-032 Atom-centered 

fragments 
X--CX--X 

-0.458(2) 

aThe descriptors are identified from the five parameter models, emerged from CP-MLR protocol with filter-1 

as 0.79, filter-2 as 2.0, filter-3 as 0.813, and filter-4 as 0.3 ≤ q2 ≤1.0 with a training set of 27 compounds. 
bThe average regression coefficient of the descriptor corresponding to all models and the total number of its 

incidence. The arithmetic sign of the coefficient represents the actual sign of the regression coefficient in the 

models. 

 Besides listed descriptors in Table 3.2, the other identified descriptors Mv 

is from constitutional and MAXDN is from topological class. The Mv represents 

mean atomic van der waals volume (scaled on carbon atom) (Equation 3.3) and 

MAXDN is maximal electrotopological negative variation (Equation 3.6). The 

further discussion is, however, based on the highest significant Equations (3.7)-

(3.10). The derived statistical parameters of these four models have shown that 

these models are significant. These models were, therefore, used to calculate the 

activity profiles of all the compounds and are included in Table 3.1 for the sake of 

comparison with observed ones. A close agreement between them has been 

observed. Additionally, the graphical display, showing the variation of observed 

versus calculated activities is given in Figure 3.2 to ensure the goodness of fit for 

each of these four models.  
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Figure 3.2: Plot of observed versus caculated pKi values for training- and test-set 

compounds. 

 Descriptors Ms (mean electrotopological state) and nDB (number of 

double bonds in molecular structure) belong to constitutional class. From the sign 
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of regression coefficients it is evident that higher value of mean electrotopological 

state (descriptor Ms) and lower number of double bonds (descriptor nDB) are 

helpful to augment the activity. The descriptor PJI2 participated in these models is 

topological class descriptor and represents 2D Petitijean shape index. The positive 

sign of regression coefficient of descriptor PJI2 suggest that a higher value of this 

descriptor is beneficiary to the DPP-4 inhibition activity.  

 The descriptors MATS2p (Moran autocorrelation of lag-2/weighted by 

atomic polarizabilities) and MATS6e (Moran autocorrelation of lag-6/weighted 

by atomic Sanderson electronegativities) are 2D autocorrelation descriptors. It is 

evinced from the models mentioned above that the descriptor MATS2p 

contributed positively and descriptor MATS6e negatively to the activity. Thus a 

higher value of descriptor MATS2p and a lower value of descriptor MATS6e will 

be supportive to enhance the inhibition activity. The participated descriptors 

BELe5 (lowest eigenvalue n.5 of Burden matrix/weighted by atomic Sanderson 

electronegativities), BELv3 (lowest eigenvalue n.3 of Burden matrix/weighted by 

atomic van der Waals volumes) and BEHv1 (highest eigenvalue n.1 of Burden 

matrix/weighted by atomic van der Waals volumes) belong to BCUT class. All 

these descriptors contributed positively to the activity suggesting that higher value 

of these will augment the activity.   

 From Equations (3.7) to (3.10), it appeared that the descriptors nCrHR, a 

functional group accounting descriptor representing number of ring tertiary 

C(sp3) functionality in a structure and atom centered fragment accounting 

descriptor C-028 showing R--CR--X type fragment in a molecular structure make 

negative contribution to activity and JGI2, mean Galvez topological charge index 

of order 2 shown positive correlation to the activity. In this way absence of 

number of ring tertiary C(sp3) functionality along with R--CR--X type fragment 

in a molecular structure and higher value of mean Galvez topological charge 

index of order 2 would be advantageous in improving the DPP-4 inhibition 

activity of a compound.  
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 To corroborate the study further, a PLS analysis has also been carried out 

on 19 descriptors identified through CP-MLR. For this purpose, the descriptors 

have been autoscaled (zero mean and unit s.d.) to give each one of them equal 

weight in the analysis. In the PLS cross‐validation, three components have been 

found to be the optimum for these 19 descriptors and they explained 89.7% 

variance in the activity (r
2 

= 0.897). The results of the PLS analysis and the 

MLR‐like PLS coefficients of these 19 descriptors are given in Table 3.3. 

Table 3.3: PLS and MLR-like PLS models from the descriptors of five parameter 

CP-MLR models for DPP-4 binding affinity. 

 

A: PLS equation 

PLS components PLS coefficient (s.e.)
a
 

Component-1 0.196(0.015) 

Component-2 -0.113(0.019) 

Component-3 0.078(0.023) 

Constant 8.693 

B: MLR-like PLS equation 

S. No. Descriptor MLR-like coefficient (f.c.)
b
 Order  

1 Ms 0.311(0.109) 2 

2 nDB 0.045(0.016) 17 

3 HNar -0.157(-0.55) 10 

4 PJI2 0.184(0.064) 9 

5 IC1 0.115(0.040) 13 

6 BELm8 -0.083(-0.029) 14 

7 BEHv1 0.318(0.111) 1 

8 BELv3 0.215(0.075) 3 

9 BELe5 0.210(0.073) 4 

10 JGI2 0.130(0.045) 12 

11 MATS5e -0.077(-0.027) 15 
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12 MATS6e -0.131(-0.045) 11 

13 MATS6p -0.020(-0.007) 18 

14 GATS2v -0.055(-0.019) 16 

15 nCp 0.011(0.004) 19 

16 nCrHR -0.208(-0.072) 5 

17 nNR2 -0.184(-0.064) 8 

18 C-028 -0.187(-0.065) 7 

19 C-032 -0.205(-0.071) 6 

Constant  7.909 

C: PLS regression statistics Values 

n 27 

r 0.947 

s 0.148 

F 67.415 

q
2

LOO 0.851 

q
2

L5O 0.860 

r
2

Test 0.662 

a
Regression coefficient of PLS factor and its standard error. 

b
Coefficients of MLR-like PLS 

equation in terms of descriptors for their original values; f.c. is fraction contribution of regression 

coefficient, computed from the normalized regression coefficients obtained from the autoscaled 

(zero mean and unit s.d.) data. 

 The calculated activity values of training- and test-set compounds are in 

close agreement to that of the observed ones and are listed in Table 3.1. For the 

sake of comparison, the plot between observed and calculated activities (through 

PLS analysis) for the training- and test-set compounds is also given in Figure 3.2. 

Figure 3.3 shows a plot of the fraction contribution of normalized regression 

coefficients of these descriptors to the activity (Table 3.3).  

  The top ten descriptors in decreasing order of significance are BEHv1, 

Ms, BELv3, BELe5, nCrHR, C-032, C-028, nNR2, PJI2 and HNar (Table 3.3, 

Figure 3.3).  
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Figure 3.3: Plot of fraction contribution of MLR-like PLS coefficients 

(normalized) against 19 identified descriptors (Table 3.3) associated with DPP-4 

binding affinity of the compounds. 

 Among these descriptors, BEHv1, Ms, BELv3, BELe5, nCrHR, C-028 

and PJI2 are part of Equations discussed above and convey same inferences in 

PLS analysis. The negative contributions of atom centered fragment descriptor C-

032 (X--CX--X type fragment), functional group count descriptor nNR2 (number 

of tertiary aliphatic amine functionality in a molecule) and toplogical descriptor 

HNar (Narumi harmonic topological index) advocated lower value of these are 

helpful in improving the activity profile. It is also observed that PLS model from 

the dataset devoid of 19 descriptors (Table 3.3) remained inferior in explaining 

the activity of the analogues.  

2.1.1.2. APPLICABILITY DOMAIN (AD) 

 On analyzing the applicability domain (AD) in the Williams plot (Figure 

3.4) of the model based on the whole data set (Table 3.4), no any compound has 

been identified as an obvious ‘outlier’ for the DPP-4 inhibitory activity if the limit 

of normal values for the Y outliers (response outliers) was set as 3×(standard 

deviation) units. One of the compound (2; Table 3.1) was found to have leverage 
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(h) values greater than the threshold leverage (h*); suggesting it as chemically 

influential compound.  

 For both the training-set and test-set, the suggested model matches the 

high quality parameters with good fitting power and the capability of assessing 

external data. Furthermore, all of the compounds were within the applicability 

domain of the proposed model and were evaluated correctly. 

 

       

 

       

Figure 3.4: Williams plot for the training-set and test- set for inhibition activity of 

DPP4 for the compounds in Table 3.1. The horizontal dotted line refers to the 

residual limit (±3×standard deviation) and the vertical dotted line represents 

threshold leverage h* (= 0.529).   
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Table 3.4: Models derived for the whole data set (n = 34) for the DPP-4 binding 

affinity in descriptors identified through CP-MLR. 

Model r s F Eq. 

pKi = 7.366 +1.980(0.276)Ms  

–0.762(0.176)nDB  +0.231(0.092)PJI2  

+1.073(0.178)BELv3 +0.731(0.181)JGI2 

0.880 0.216 19.331 (3.7a) 

pKi = 7.653 +1.858(0.265)Ms  

–0.844(0.176)nDB +1.081(0.175)BELv3 

+0.694(0.180)JGI2 –0.426(0.156)C-028 

0.884 0.212 20.176 (3.8a) 

pKi = 6.571 +1.600(0.184)Ms  

+0.356(0.092)PJI2 +0.764(0.241)BEHv1 

+0.777(0.180)BELv3+0.698(0.171)MATS2p 

0.884 0.213 20.026 (3.9a) 

pKi = 8.402 + 1.269(0.194)Ms  

+0.295(0.098)PJI2 +0.685(0.159)BELe5  

–0.834(0.187)MATS6e –0.792(0.185)nCrHR 

0.865 0.228 16.727 (3.10a) 

2.1.2. CONCLUSIONS 

 The DPP4 inhibition activity of imidazolopyrimidine amides has been 

quantitatively analyzed in terms of chemometric descriptors. The statistically 

validated quantitative structure-activity relationship (QSAR) models provided 

rationales to explain the inhibition activity of these congeners. The descriptors 

identified through combinatorial protocol in multiple linear regression (CP-MLR) 

analysis have highlighted the role of mean electrotopological state (Ms), number 

of double bonds in molecular structure (nDB), 2D Petitijean shape index (PJI2), 

Moran autocorrelation of lag-2/ weighted by atomic polarizabilities (MATS2p), 

Moran autocorrelation of lag-6/weighted by atomic Sanderson electronegativities 

(MATS6e), lowest eigenvalue n.5 of Burden matrix/ weighted by atomic 

Sanderson electronegativities (BELe5), lowest eigenvalue n.3 of Burden matrix/ 

weighted by atomic van der Waals volumes (BELv3),  highest eigenvalue n.1 of 

Burden matrix/ weighted by atomic van der Waals volumes (BEHv1). In addition 

to these 2
nd

 order mean Galvez topological charge index (JGI2), number of ring 
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tertiary C(sp3) (nCrHR) and R--CR--X type structural fragments (C-028) have 

also shown prevalence to model the inhibitory activity.  

 From statistically validated models, it appeared that the descriptors Ms, 

PJI2, JGI2, MATS2p, BELe5, BELv3 and BEHv1 make positive contribution to 

activity and their higher values are conducive in improving the DPP4 inhibition 

activity of a compound. On the other hand, the descriptors nDB, C-028, nCrHR 

and MATS6e render detrimental effect to activity. Therefore, absence or lower 

number of double bonds (nDB), R--CR--X type structural fragment (C-028), 

number of ring tertiary C(sp3) (nCrHR) and lower value of descriptor MATS6e 

would be advantageous. Such guidelines may be helpful in exploring more 

potential analogues of the series. The statistics emerged from the test sets have 

validated the identified significant models. PLS analysis has further confirmed the 

dominance of the CP‐MLR identified descriptors. Applicability domain analysis 

revealed that the suggested models have acceptable predictability. All the 

compounds are within the applicability domain of the proposed models and were 

evaluated correctly. 

2.2. THE (2S)-CYANOPYRROLIDINE ANALOGUES 

 DPP-4 is a serine protease, able to cleave the N-terminal dipeptide having 

preference for L-proline or L-alanine at the penultimate position [722-725]. A 

large number of DPP-IV inhibitors resemble the P2-P1 dipeptidyl substrate 

cleavage product. The simplest inhibitors are the compounds which are not having 

a carbonyl functionality of the proline residue, e.g., aminoacyl pyrrolidines and 

thiazolidines, possessing moderate inhibition activity for DPP-4. Replacement of 

hydrogen with an electrophilic nitrile group at the 2-position of the pyrrolidine, in 

some compounds, elicited a 1000-fold increase in potency compared to the 

unsubstituted pyrrolidines [726].   

 One of the potent and stable representatives of the nitrile class is 

cyclohexylglycine-(2S)-cyanopyrrolidine, having a Ki value of 1.4 nM and an 

excellent chemical stability t1/2 ~ 48 h at pH 7.4 [727]. Another class, similar to 
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proline inhibitors, was synthesized with diverse N-substituted glycines in the P2 

site [715]. In this class, the side chain was moved from the α-carbon to the 

terminal nitrogen, led to two potent derivatives which have showed greater 

efficacy in clinical trial [728].  From this study, it was concluded that (2S)-

cyanopyrrolidine derivatives with N-substituted glycine in the P2 site are more 

selective for DPP-IV than α-carbon-substituted glycine.  

 An interesting study has recently been reported to develop a new 

pharmacophore in the P2 site with N-substituted glycine [729]. Initially, the P2 

site amine extension was designed using β-alanine as building block and it was 

coupled the C-terminal with various substituted amines to generate a novel 

pharmacophore in the P2 site. Then, the N-terminal of the β-alanine derivative 

was combined with the P1 site α-bromoacetyl (2S)-cyanopyrrolidide to design 2-

[3-[[2-[(2S)-2-cyano-1-pyrrolidinyl]-2-oxoethyl]amino]-1-oxopropyl]-based DPP-

IV inhibitors. The structure-activity relationships of several series (I–III) of these 

DPP-4 inhibitors were explored to discover the potent and selective DPP-4 

inhibitors. Series I, II, and III, being N-substituted glycine derivatives include, 

respectively, the bicyclic ring system, monocyclic piperazine ring, and 

phenylalkyl groups. These compounds were tested for inhibition of DPP-4, DPP-

8, and DPP-2. The activity was evaluated in terms of the concentration of a 

compound required to bring out 50% inhibition of the enzyme concerned.  

 The reported twenty five (2S)-cyanopyrrolidine analogues, belonging to 

series I, II, and III  are considered to formulate the data set for present study 

[729].  

Since the activity variation for DPP-2 is very small, therefore, inhibition profiles 

for DPP-4 and DPP-8 have only been considered for quantitative analysis. The 

data set has been further, divided into training and test sets. One fifth of the 

compounds, from this data set, have been included in the test set for the validation 

of derived models while remaining compounds were used to derive the model 

correlating biological activity with descriptors unfolding molecular structures. 
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The test-set, containing 5 compounds out of the 25 active ones, was generated 

using in house randomization program. In this way, the identified test set will 

further ensure the statistical significance and reasonable predictability of derived 

models. As the leave-one-out (LOO) procedure has been applied to each model, 

therefore, corresponding to test set the derived model would be validated both 

internally and externally.  

 The general structures of series (I–III) are depicted in Figure 3.5. The 

structural variations, the reported activity values (expressed as IC50(nM), and 

training and test set compounds are given in Table 3.5. 
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Figure 3.5: General structures of series (I–III) 

Table 3.5: Structural variations and reported activities of (2S)-Cyanopyrrolidines.  

Cpd.  n m  R1  R2  R3  R4  R5  
IC50(nM)

a 

DPP4 DPP8 

1  0  1  H  H  H    3236 4169 

2  1  1  H  H  H    116 3583 

3  1  1  H  H  6,7-diOMe    651 3340 

4
b
 
 

1  1  H  H  6-F    83 1700 

5  1  0  H  H  H    132 2121 

6  2  1  H  H  H    428 1407 

7  1  1  Me  H  H    54 5346 

8
b
  1  1  i-Pr  H  H    811 41859 

9  1  1  Me  Me H    49 >10
5
 

10  1  1  Me  Me 6-F    30 >10
5
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11  1  1  Me  Me 6,8-F2    22 >10
5
 

12 
 

1  0  Me  Me H    15 >10
5
 

13  1   H  H  CO(3,5-F2C6H3)    676 202 

14  1   H  H SO2C6H4-4-NHCOCH3    418 3416 

15 
 

1   H  H  nicotinonitrile    629 2000 

16  1   H  H  benzothiazole    527 2117 

17
 

1  0  H  H  H  H  H  452 10744 

18 1  0  H  H  4-NO2  H  H  317 2387 

19
b
 1  0  H  H  H  H  Et

c
  447 21961 

20
 

1  0  H  H  3,5-F2  H  H  369 5532 

21
 

1  0  H  H  H  H  i-Pr
c
 784 12847 

22
b 

1  0  H  H  H  Me Me  119 8338 

23 1  0  Me  Me  H  Me  Me 1108 >10
5
 

24
 

1  1  H  H  H  H  H  564 2592 

25
b 

       298 855 
a
IC50 represents the concentration of a compound required to bring out 50% inhibition of DPP-IV 

and DPP8, taken from ref [729]; 
b
compound of test set; 

c
The stereochemistry at the benzylic 

carbon is not defined (mixture of diastereomers). 

 Before the application of CP-MLR procedure, all those descriptors which 

are intercorrelated beyond 0.90 (descriptor vs. descriptor, r > 0.90) and showing a 

correlation of less than 0.1 with the biological endpoints (descriptor vs. activity, r 

< 0.1) were excluded. This has reduced the total dataset of the compounds from 

484 to 90 and 84 descriptors as relevant ones for the DPP-IV and DPP8 inhibitory 

activity, respectively.  

2.2.1. RESULTS AND DISCUSSION 

2.2.1.1. QSAR RESULTS 

 Initially, the DPP-IV inhibition activity of titled compounds was 

investigated with a variety of 0D-, 1D- and 2D-descriptors obtained from 

DRAGON software. The models, in three parameters of the descriptor pool of 90 

descriptors, emerged in CP-MLR for the DPP-IV inhibitory actions are tabulated 

in Table 3.6 as Equations (3.11) to (3.16).  The signs of the regression coefficients 

have indicated the direction of influence of explanatory variables in above 

models. The positive regression coefficient associated to a descriptor will 
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augment the activity profile of a compound while the negative coefficient will 

cause detrimental effect to it.  

Table 3.6: CP-MLR models
a
 derived in three parameters for the DPP-IV 

inhibition activity.  

Model r s F r
2

Test Eq. 

pIC50 = 5.090 + 1.709(0.280)JGI4 

– 1.150(0.331)ATS8p 

+ 2.074(0.297)GATS8p 

0.934 0.242 36.897 0.279 (3.11) 

pIC50 = 5.538 + 0.599(0.248)BELm1 

–  0.902(0.364)GATS7e  

+ 1.784(0.358)GATS8p 

0.854 0.353 14.465 0.331 (3.12) 

pIC50 = 7.174 – 1.493(0.444)Uindex 

+ 1.200(0.347)JGI4  

– 1.492(0.442)MATS3e 

0.850 0.358 13.927 0.250 (3.13) 

pIC50 = 5.939 – 0.976(0.400)GATS7e 

+ 1.442(0.410)GATS8p 

+ 0.668(0.325)C-002 

0.842 0.367 13.021 0.331 (3.14) 

pIC50 = 6.094 – 0.663(0.327)RBN 

–  0.725(0.361)GATS7e  

+ 1.848(0.374)GATS8p 

0.841 0.368 12.913 0.191 (3.15) 

pIC50 = 5.651 + 1.109(0.418)JGI4 

+ 1.124(0.524)MATS8e  

– 0.806(0.400)GATS7e 

0.804 0.404 9.812 0.233 (3.16) 

a
The models, in three parameters, emerged from CP-MLR protocol with filter-1 as 0.79, filter-2 as 

2.0, filter-3 as 0.5 and filter-4 as 0.3 ≤ q
2
 ≤1.0 with a training set of 20 compounds. 

 The maximum number of descriptors, participated in these models ATS8p, 

GATS8p, GATS7e, MATS3e and MATS8e, belong to 2D-autocorrelations (2D-

AUTO) class. Descriptors, GATS8p and MATS8e both added positively to the 

inhibitory activity whereas ATS8p, GATS7e and MATS3e contributed negatively 

to the activity advocating that higher values of descriptors GATS8p and MATS8e 

and lower values of descriptors ATS8p, GATS7e and MATS3e would be 

beneficiary to the activity. Constitutional class descriptors are dimensionless or 

0D descriptors and are independent from molecular connectivity and 
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conformations. The appeared constitutional class descriptor RBN (number of 

rotatable bonds) favors the least preference of rotatable bonds. 

 Descriptor Uindex, corresponds to Balaban U-index, is a topological class 

descriptor. Topological class descriptors are based on a graph representation of 

the molecule and are numerical quantifiers of molecular topology obtained by the 

application of algebraic operators to matrices representing molecular graphs and 

whose values are independent of vertex numbering or labeling. They can be 

sensitive to one or more structural features of the molecules such as size, shape, 

symmetry, branching and cyclicity and can also encode chemical information 

concering atom type and bond multiplicity. The negative contribution of 

descriptor Uindex suggested that a lower value of it would be supportive to the 

activity. The other participated descriptors are JGI4 (from the Galvez topological 

charge indices), BELm1 (from the modified Burden eigenvalues class, BCUT 

descriptors) and C-002 (from the atom-centered fragments). The 4
th

 order mean 

Galvez topological charge index (JGI4), the lowest eigenvalue n.1 of Burden 

matrix/ weighted by atomic masses (BELm1) and CH2R2 type atom centered 

fragment (C-002) correlated positively to the activity suggested that a higher 

value of these will augment the activity.  

 However, for all the models mentioned in Table 3.6, the r
2

Test values 

(<0.5) are inferior to a specified value. Considering the number of observation in 

the data set, models with up to four descriptors were explored. A total number of 

seven models have been obtained through CP-MLR. Following are the selected 

four-descriptor models, obtained from CP-MLR, for the DPP-4 inhibitory activity.  

pIC50 = 4.722 + 1.993(0.276)JGI4 – 1.295(0.300)ATS8p  

+ 2.163(0.265)GATS8p + 0.405(0.173)C-024 

n = 20, r = 0.952, s = 0.214, F = 36.718, q
2

LOO = 0.832,  

q
2

L5O = 0.805, r
2

Test= 0.576                                                                (3.17) 

pIC50 = 5.165 – 0.688(0.336)ATS8p – 0.690(0.267)GATS7e 

+ 2.112(0.344)GATS8p + 1.331(0.288)MLOGP 
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n = 20, r = 0.921, s = 0.273, F = 21.086, q
2

LOO = 0.715, 

q
2

L5O = 0.704, r
2

Test= 0.730                                                                (3.18) 

pIC50 = 5.910 – 1.302(0.282)RBN + 3.530(0.486)BIC3  

– 2.310(0.364)BIC5 + 1.897(0.247)H-052 

n = 20, r = 0.920, s = 0.274, F = 20.846, q
2

LOO = 0.561, 

 q
2

L5O = 0.713, r
2

Test= 0.801                                                                (3.19) 

pIC50 = 3.727 + 3.070(0.467)BIC3 + 1.341(0.226)SRW09  

+ 0.853(0.243)C-040 + 2.530(0.335)H-052 

n = 20, r = 0.907, s = 0.295, F = 17.516, q
2

LOO = 0.558, 

 q
2

L5O = 0.582, r
2

Test= 0.543                                                               (3.20) 

 The 18 descriptors, that were shared by these seven models, along with 

their brief description, average regression coefficients and total incidences are 

given in Table 3.7. 

Table 3.7: Identified descriptors
a
 along with their physical meaning, average 

regression coefficient and incidence
b
, in modeling the DPP-4 inhibitory activity.  

S. 

No. 
Descriptor  Descriptor class Physical meaning 

Average 

regression 

coefficient 

(incidence) 

1 RBN Constitutional  Number of rotatable bonds -1.302(1) 

2 PJI2 Topological 2D Petitijean shape index 0.360(1) 

3 BIC3 Topological  Bond information content 

(neighborhood symmetry of 3 

order) 

3.300(2) 

4 BIC5 Topological  Bond information content 

(neighborhood symmetry of 5 

order) 

-2.310(1) 

5 SRW09 Molecular walk 

counts 

Self- returning walk count of 

order 09 

1.341(1) 

6 BELm1 BCUT  Lowest eigenvalue n.1 of 

Burden matrix/ weighted by 

atomic masses  

0.713(1) 
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7 BEHv1 BCUT  Highest eigenvalue n.1 of 

Burden matrix/ weighted by 

atomic van der Waals  volumes 

0.821(1) 

8 BELe1 BCUT  lowest eigenvalue n.1 of Burden 

matrix/ weighted by atomic 

Sanderson electronegativities 

0.655(1) 

9 BELp2 BCUT  lowest eigenvalue n.2 of Burden 

matrix/ weighted by atomic 

polarizabilities 

-0.675(1) 

10 JGI4 Galvez topological 

charge indices 

Mean topological charge index 

of order 4 

1.993(1) 

11 ATS8p 2D autocorrelations  Broto-Moreau autocorrelation 

of a topological structure - lag8/ 

weighted by atomic 

polarizabilities 

-0.992(2) 

12 GATS7e 2D autocorrelations Geary autocorrelation of lag-7/ 

weighted by atomic Sanderson 

electronegativities 

-0.901(4) 

13 GATS8p 2D autocorrelations Moran autocorrelation of lag-8/ 

weighted by atomic 

polarizabilities 

2.020(5) 

14 C-024 Atom-centred 

fragments 

R--CH--R 0.405(1) 

15 C-040 Atom-centred 

fragments 

R-C(=X)-X/R-C#X/X-=C=X 0.853(1) 

16 H-052 Atom-centred 

fragments 

H attached to C0(sp3) with 1X 

attached to next C 

2.214(2) 

17 MR Properties  Ghose-Crippen molecular 

refractivity 

-1.058(1) 

18 MLOGP Properties  Moriguchi octanol-water 

partition coefficient (logP) 

1.331(1) 

a
The descriptors are identified from the four parameter models, emerged from CP-MLR protocol 

with filter-1 as 0.79, filter-2 as 2.0, filter-3 as 0.809 (r-bar of the three parameter model having the 

highest r
2

Test ), and filter-4 as 0.3 ≤ q
2
 ≤1.0 with a training set of 20 compounds. 

b
The average 

regression coefficient of the descriptor corresponding to all models and the total number of its 

incidence.  

 The newly emerged descriptors C-024, H-052 and C-040 in these models 

are atom centered fragments and shown positive correlation to the activity. 

Therefore, presence of R--CH--R (descriptor C-024), H attached to C0(sp3) with 

1X attached to next C (descriptor H-052) and R-C(=X)-X/R-C#X/X-=C=X 
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(descriptor C-040) type atom centered fragments in a molecular structure would 

enhance the activity. Topological class descriptor BIC3 (bond information content 

of 3
rd

 order neighborhood symmetry) contributed positively whereas BIC5 (bond 

information content of 5
th

 order neighborhood symmetry) contributed negatively 

to the activity revealed that a higher value of descriptor BIC3 and a lower value of 

descriptor BIC5 would be beneficiary to the activity. Descriptor SRW09 

represents self- returning walk count of order 09 is from molecular walk counts 

class. Molecular walk counts are 2D-descriptors representing self-returning walk 

counts of different lengths. The descriptor MLOGP is from properties class   

representing Moriguchi octanol-water partition coefficient (logP). It is evinced 

from the models that higher values of both of these descriptors (SRW09 and 

MLOGP) would augment the activity. 

 In all above equations, the F-values remained significant at 99% level. The 

indices q
2

LOO and q
2

L5O (> 0.5) have accounted for their internal robustness. For 

all above models the r
2
Test values, obtained greater than 0.5, specified that the 

selected test-set is fully accountable for their external validation.  These models 

are able to estimate up to 90.73 percent of variance in observed activity of the 

compounds. The derived statistical parameters of these four models have shown 

that these models are significant. These models were, therefore, used to calculate 

the activity profiles of all the compounds and are included in Table 3.8 for the 

sake of comparison with observed ones. A close agreement between them has 

been observed.  

Table 3.8: Observed, calculated and predicted DPP-4 inhibition activities of (2S)-

Cyanopyrrolidine analogues.  

Cpd. 

pIC50(M)
a
 

Obsd
b
. 

Eq. (3.17) Eq. (3.18) Eq. (3.19) Eq. (3.20) 

Calc. Pred
c
. Calc.  Pred

c
. Calc.  Pred

c
. Calc. Pred

c
. 

1 5.49 5.76 5.90 5.37 5.31 5.75 5.98 5.73 5.79 
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2 6.94 6.78 6.76 6.75 6.72 6.59 6.52 6.64 6.61 

3 6.19 6.42 6.53 6.04 6.00 5.84 5.76 5.86 5.80 

4
d 

7.08 7.00 -
d 

6.99 -
d
 7.26 -

d
 7.22 -

d
 

5 6.88 6.68 6.65 6.56 6.50 7.03 7.11 6.84 6.82 

6 6.37 6.58 6.60 6.29 6.18 6.40 6.41 6.78 6.82 

7 7.27 7.09 7.07 7.06 7.04 6.93 6.85 7.27 7.27 

8
d 

6.09 6.42 -
d
 6.45 -

d
 6.26 -

d
 6.32 -

d
 

9 7.31 7.33 7.34 7.21 7.19 7.13 7.09 7.10 7.06 

10 7.52 7.46 7.44 7.42 7.40 7.70 7.77 7.60 7.63 

11 7.66 7.44 7.34 7.52 7.47 7.70 7.72 7.60 7.58 

12 7.82 7.98 8.07 7.72 7.68 7.45 7.18 7.33 6.99 

13 6.17 6.20 6.20 6.23 6.24 6.15 6.14 5.88 5.71 

14 6.38 6.72 6.80 6.36 6.34 6.15 6.06 6.57 6.68 

15 6.20 6.11 5.99 6.25 6.28 6.21 6.21 6.30 6.34 

16 6.28 5.88 5.78 6.31 6.32 6.27 6.27 6.81 7.10 

17 6.34 6.33 6.32 6.44 6.45 6.56 6.59 6.27 6.26 

18 6.50 6.47 6.47 6.42 6.41 6.67 6.71 6.44 6.43 

19
d 

6.35 6.00 -
d
 6.24 -

d
 6.14 -

d
 6.42 -

d
 

20 6.43 6.56 6.59 6.93 7.16 6.88 6.99 6.55 6.57 

21 6.11 5.97 5.88 5.96 5.88 6.06 6.05 5.87 5.83 

22
d 

6.92 6.71 -
d
 6.76 -

d
 6.97 -

d
 6.62 -

d
 

23 5.96 6.07 6.20 6.51 6.80 6.32 7.14 6.26 6.87 

24 6.25 6.24 6.24 6.75 6.84 6.24 6.23 6.36 6.37 

25
d 

6.53 6.51 -
d
 6.60 -

d
 6.68 -

d
 6.16 -

d
 

a
IC50 represents the concentration of a compound required to bring out 50% inhibition of DPP-IV 

and the same is expressed as pIC50 on molar basis; 
b
Taken from ref. [729]; 

c
Leave-one-out (LOO) 

procedure; 
d
Compound included in test set.  

 Additionally, the graphical display, showing the variation of observed 

versus calculated activities is given in Figure 3.6 to ensure the goodness of fit for 

each of these four models. 
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Figure 3.6: Plots showing variations of observed versus calculated pIC50 values 

of training and test set compounds.  

 CP-MLR analysis has also been performed for the DPP-8 inhibitory 

activity with the descriptor pool of 84 descriptors with the same test which was 

used for the DPP-4 inhibitory activity.  

All the emerged four models in three descriptors are given below through 

Equations (3.21) to (3.24).  

 

pIC50 = 5.283 + 0.863(0.234)MW – 0.745(0.207)X1Av + 0.544(0.123)PJI2 

n = 15, r = 0.885, s = 0.218, F = 13.264, q
2

LOO = 0.552, 

 q
2

L5O = 0.578, r
2

Test= 0.683                                                              (3.21) 

pIC50 = 5.419 – 0.536(0.210)X1Av + 0.533(0.129)PJI2 + 0.497(0.148)C-040 

n = 15, r = 0.871, s = 0.229, F = 11.623, q
2

LOO = 0.507, 

 q
2

L5O = 0.612, r
2

Test= 0.761                                                                (3.22) 
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pIC50 = 5.300 – 0.778(0.223)X1Av + 0.575(0.130)PJI2 + 0.771(0.231)BEHm8 

n = 15, r = 0.871, s = 0.230, F = 11.525, q
2

LOO = 0.506, 

 q
2

L5O = 0.726, r
2

Test= 0.646                                                              (3.23) 

pIC50 = 6.037 + 0.609(0.135)PJI2 – 0.601(0.254)GATS1e – 0.691(0.205)C-024 

n = 15, r = 0.860, s = 0.238, F = 10.493, q
2

LOO = 0.533, 

 q
2

L5O = 0.528, r
2

Test= 0.511                                                              (3.24) 

 The derived statistical parameters of these four models have shown that 

these models are significant and are able to explain up to 78.34 percent of 

variance in observed DPP-8 activity of the compounds. The activity values, 

calculated using Eqs. (3.21) to (3.24), are in close agreement to the observed ones 

and this agreement is given in Table 3.9 for the sake of comparison. 

 

Table 3.9: Observed, calculated and predicted DPP-8 inhibition activities of (2S)-

Cyanopyrrolidine analogues.  

 

Cpd. 

 

pIC50
a
 

Obsd
b
. 

Eq. (3.21) Eq. (3.22) Eq. (3.23) Eq. (3.24) 

Calc. Pred
c
. Calc.  Pred

c
. Calc.  Pred

c
. Calc.  Pred

c
. 

1 5.38 5.72 5.82 5.79 5.89 5.64 5.74 5.81 5.89 

2 5.45 5.11 5.04 5.16 5.11 5.20 5.16 5.20 5.16 

3 5.48 5.60 5.63 5.34 5.32 5.69 5.75 5.50 5.53 

4
d 

5.77 5.88 -
d
 5.80 -

d
 6.01 -

d
 6.20 -

d
 

5 5.67 5.72 5.73 5.79 5.82 5.90 5.94 5.81 5.84 

6 5.85 5.61 5.55 5.62 5.56 5.79 5.77 5.81 5.81 

7 5.27 5.12 5.09 5.13 5.10 5.23 5.23 5.20 5.19 

8
d 

4.38 5.11 -
d
 5.02 -

d
 5.17 -

d
 5.20 -

d
 

9 -
e 

-
e 

-
e 

-
e 

-
e 

-
e 

-
e 

-
e 

-
e 

10 -
e 

-
e 

-
e 

-
e 

-
e 

-
e 

-
e 

-
e 

-
e 

11 -
e 

-
e 

-
e 

-
e 

-
e 

-
e 

-
e 

-
e 

-
e 

12 -
e 

-
e 

-
e 

-
e 

-
e 

-
e 

-
e 

-
e 

-
e 

13 6.69 6.40 6.11 6.43 6.11 6.29 6.02 6.21 5.97 

14 5.47 5.55 5.70 5.53 5.62 5.45 5.43 5.55 5.56 

15 5.7 5.66 5.66 5.91 6.04 5.64 5.63 5.67 5.65 
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16 5.67 5.87 5.95 5.57 5.54 5.81 5.85 5.69 5.69 

17 4.97 5.01 5.02 5.18 5.21 4.99 5.00 4.88 4.84 

18 5.62 5.61 5.61 5.48 5.43 5.41 5.33 5.65 5.67 

19
d 

4.66 4.92 -
d
 5.02 -

d
 4.84 -

d
 4.89 -

d
 

20 5.26 5.49 5.57 5.41 5.46 5.60 5.72 5.58 5.68 

21 4.89 4.97 5.00 5.01 5.05 4.88 4.87 4.89 4.90 

22
d 

5.08 5.05 -
d
 5.11 -

d
 4.90 -

d
 4.89 -

d
 

23 -
e 

-
e 

-
e 

-
e 

-
e 

-
e 

-
e 

-
e 

-
e 

24 5.59 5.51 5.48 5.63 5.65 5.46 5.39 5.50 5.46 

25
d 

6.07 5.60 -
d
 5.79 -

d
 5.65 -

d
 5.49 -

d
 

a
IC50 represents the concentration of a compound required to bring out 50% inhibition of DPP-4 

and the same is expressed as pIC50 on molar basis; 
b
Taken from ref. [729]; 

c
Leave-one-out (LOO) 

procedure; 
d
Compound included in test set.

e
Compound with uncertain activity, not part of data set. 

 

 The participated descriptors in above models suggested that higher values 

of molecular weight (MW, constitutional class descriptor), 2D-Petitijean shape 

index (PJI2, topological class), highest eigenvalue n.8 of Burden matrix weighted 

by atomic masses (BEHm8, BCUT descriptor) and presence of R-C(=X)-X/R-

C#X/X-=C=X type atom centered fragments (descriptor C-040, atom centered 

fragment descriptor) would be beneficiary to DPP8 inhibitory activity. Another 

emerged topological class descriptor X1Av (average valence connectivity index, 

chi-1), 2D-AUTO class descriptor GATS1e (Geary autocorrelation of lag-

1/weighted by atomic Sanderson electronegativities) advocated that a lower value 

of these descriptors and absence of R--CH--R type fragment (descriptor C-024)   

would augment the activity. 

 CP-MLR has also been carried out on DPP-8 inhibitory activity from the 

pool of 90 descriptors which was used to find rationales for the DPP-4 inhibitory 

activity. The analysis resulted into 10 models having both the q
2

LOO and r
2

Test > 

0.5 and the highest significant four models are listed in Table 3.10. Models listed 

in Table 3.10 are able to estimate up 84.82 percent of variance in observed DPP-8 

activity of the compounds. 

 



 

 

166 

 

Table 3.10: Three parameter CP-MLR models for the DPP-8 inhibition activity 

from the descriptor pool of DPP-4.  

 

Model r s F r
2

Test Eq. 

pIC50 = 5.218 – 0.999(0.193)X2Av  

+ 0.523(0.103)PJI2 

+1.075(0.230)MR  

0.920 0.182 20.490 0.545 (3.25) 

pIC50 = 5.510 – 0.737(0.203)X2Av  

+ 0.464(0.118)PJI2  

+ 0.613(0.161)N-072 

0.896 0.208 14.982 0.755 (3.26) 

pIC50 = 5.405 – 0.865(0.217)X2Av  

+ 0.411(0.125)PJI2  

+ 0.702(0.195)BELp2 

0.889 0.214 13.934 0.516 (3.27) 

pIC50 = 5.221 – 1.066(0.276)X0Av  

+ 0.410(0.125)PJI2  

+ 0.871(0.231)H-047 

0.888 0.215 13.730 0.762 (3.28) 

a
The models, in three parameters, emerged from CP-MLR protocol with filter-1 as 0.79, filter-2 as 

2.0, filter-3 as 0.5 and filter-4 as 0.3 ≤ q
2
 ≤1.0 with a training set of 15 compounds. 

 

 The newly appeared descriptors in above models are MR (property class 

descriptor), N-072 and H-047 (ACF class descriptor), X0Av and X2Av (TOPO 

class descriptor) and BELp2 (BCUT descriptor). Tabled Equations revealed that 

lower values of average valence connectivity indices (X0Av and X2Av, chi-0 and 

chi-2) would be advantageous to enhance the activity. On the other hand, a higher 

lower value of Ghose-Crippen molecular refractivity (MR) and lowest eigenvalue 

n.2 of Burden matrix weighted by atomic polarizabilities are incremental to the 

activity. Counts for certain structural fragments, H attached to C1(sp3) /C0(sp2) 

(descriptor H-047) and R-CO-N</>N-X=X (descriptor N-072) strongly 

recommend the presence of such structural features favorable to activity. Thus the 

descriptors identified for rationalizing the DPP-4 activity give avenues to 

rationalize the DPP-8 inhibitory activity. 
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 From the different nature of emerged descriptors in final statistically 

significant models for DPP-4 and DPP-8 inhibition actions, it appeared that the 

mode of actions of titled compounds are different for DPP-4 and DPP-8 enzyme 

systems.  

2.2.1.2. Applicability domain (AD) 

  To analyze the applicability domain (AD) a Williams plot of the 

model based on the whole data set (Table 3.11) has been constructed that is 

shown in Figure 3.7.     

        

 

        

Figure 3.7: Williams plot for the training-set and test- set for inhibition activity of 

DPP-4 for the compounds in Table 3.5. The horizontal dotted line refers to the 

residual limit (±3×standard deviation) and the vertical dotted line represents 

threshold leverage h* (= 0.6).   
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Table 3.11: Models derived for the whole data set (n = 25) for the DPP-4 

inhibitory activity in descriptors identified through CP-MLR.  

 

Model r s F Eq. 

pIC50 = 4.707 +2.088(0.260)JGI4 

–1.513(0.230)ATS8p +2.197(0.246)GATS8p 

+0.478(0.158)C-024 

0.942 0.212 39.987 (3.17a) 

pIC50 = 5.216 –0.847(0.249)ATS8p  

–0.805(0.207)GATS7e +2.143(0.298)GATS8p  

+1.365(0.254)MLOGP 

0.920 0.249 27.603 (3.18a) 

pIC50 = 5.902 –1.229(0.233)RBN  

+3.431(0.415)BIC3 –2.257(0.315)BIC5  

+1.866(0.217)H-052 

0.919 0.250 27.370 (3.19a) 

pIC50 = 3.827 +2.966(0.412)BIC3  

+1.301(0.208)SRW09 +0.809(0.223)C-040  

+2.471(0.305)H-052 

0.895 0.283 20.219 (3.20a) 

 

 The analysis revealed that none of the compound has been identified as an 

obvious ‘outlier’ for the DPP-4 inhibitory activity if the limit of normal values for 

the Y outliers (response outliers) was set as 3×(standard deviation) units. None of 

the compounds was found to have leverage (h) values greater than the threshold 

leverage (h*). For both the training-set and test-set, the suggested model matches 

the high quality parameters with good fitting power and the capability of 

assessing external data. Furthermore, all of the compounds were within the 

applicability domain of the proposed model and were evaluated correctly. 

2.2.2. CONCLUSIONS 

 This study has provided a rational approach for the development of (2S)-

Cyanopyrrolidine analogues as DPP-4 inhibitors. The descriptors identified in CP-

MLR analysis have highlighted the role of atomic properties in respective lags of 

2D-autocorrelations (ATS8p, GATS8p and GATS7e), 4
th

 order mean Galvez 

topological charge index (JGI4), 3
rd

 and 5
th

 order bond information content of 

neighborhood symmetry (BIC3 and BIC5) and 9
th

 order self returning walk-count 

(SRW09) to explain the biological actions of (2S)-Cyanopyrrolidine analogues as 
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DPP-4 inhibitors. Certain structural features or fragments (RBN, C-024, C-040 

and H-052) in molecular structures in addition to hydrophobicity (MLOGP) of a 

molecule have also shown prevalence to optimize the DPP-4 inhibitory activity of 

titled compounds. Applicability domain analysis revealed that the suggested 

model for DPP-4 inhibitory activity matches the high quality parameters with 

good fitting power and the capability of assessing external data and all of the 

compounds was within the applicability domain of the proposed model and were 

evaluated correctly. 

2.3. THE ββββ-AMINOAMIDE BEARING TRIAZOLOPIPERAZINES 

 The GLP-1 therapy is beneficiary due to the regulation of insulin in a 

strictly glucose-dependent manner. Little or no risk of hypoglycemia, slowing 

down of gastric emptying and reduction of appetite are the beneficial effects of 

GLP-1 therapy. As a result of inhibition of DPP-4 the half-life of GLP-1 is 

increased and thus the beneficial effects of this incretin hormone are prolonged. 

Sitagliptin [730, 731], LAF-237 [732] and BMS-477118 [733] are examples of 

DPP-4 inhibitors. 

 Detailed structure–activity relationships (SARs) of Sitagliptin scaffold as 

DPP-4 inhibitors are reported in literature with a variety of substituents on the left 

phenyl and the right triazolopiperazine [734]. Alkyl substitution around the β-

aminoamide backbone was found to be detrimental to potency. Other 

modifications such as lengthening, shortening, or tethering along with alkyl 

substitution of triazolopiperazine series were discarded due to the similar 

ineffective SAR trends of corresponding thiazolidine [735] and the piperazine 

series [736]. A series of β-aminoamides bearing triazolopiperazines having alkyl 

substitutions around the triazolopiperazine moiety has been reported by Kim et al. 

[737]. 

The general structure of the reported thirtynine β-aminoamides bearing 

triazolopiperazine derivatives, which are considered as the data set is given in 

Figure 3.8.  
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Figure 3.8: The generalized structure of triazolopiperazine derivatives. 

 The structural variations of these analogues are mentioned in Table 3.12. 

These compounds were evaluated in vitro for their inhibition of DPP-4 and DPP-

8. This table also contains the reported inhibitory activity, in terms of IC50(nM), of 

these congeners. Additionally, test set compounds, selected through an in-house 

written randomization program, have also been mentioned in Table 3.12.  

Table 3.12: Structural variations and reported DPP-4 and DPP-8 inhibitory 

activities of triazolopiperazines. 

Cpd.  R1 R2 R3 
IC50(nM)

a
 

DPP-4 DPP-8 

1
b
 H  H H 18 48000 

2 (S)-CH3  H  H  23 23000 

3
 

(R)-CH3  H  H  14 33000 

4
c 

H  (S)-CH3  H  91 >10
5
 

5 H  (R)-CH3  H  42 75000 

6
b,c

 H  H  (S)-CH3  88 >10
5
 

7 H  H  (R)-CH3  4.3 17000 

8 di-CH3  H  H  92 66000 

9 H  H  di-CH3  175 6000 

10
b,c

 CH3  H  CH3  100 >10
5
 

11
b,c 

CH3 H  CH3  209 >10
5
 

12 CH3  H  CH3  12 70000 

13 CH3  H  CH3  11 44000 

14
c
 H  H  Et  113 >10

5 
 

15 H  H  Et  5 8000 

16
c
 H  H  CH2CF3  123 >10

5
 

17 H  H  CH2CF3  5.7 1600 

18 H  H  CH2CH=CH2  1.5 3000 

19 H  H  CH2CH=CH2  32 72000 

20
c
 H  H  CH2CON(CH3)2 377 >10

5
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21
b
 H  H  CH2CON(CH3)2  2.8 30000 

22
c
 H  H  CH2Ph  140 >10

5
 

23 H  H  CH2Ph  0.66 622 

24
c
 H  H  CH2(4-methoxyphenyl)  320 >10

5
 

25 H  H  CH2(4-methoxyphenyl)  0.43 367 

26
b,c

 H  H  CH2(2-trifluoromethylphenyl)  438 >10
5
 

27
b
 H  H  CH2 (2-trifluoromethylphenyl)  0.31 8000 

28
b,c

 H  H  CH2(2-fluorophenyl)  131 >10
5
 

29
b
 H  H  CH2(2-fluorophenyl)  0.46 1103 

30
c
 H  H  CH2(4-fluorophenyl)  116 >10

5
 

31 H  H  CH2(4-fluorophenyl)  0.18 332 

32
c
 H  H  CH(OH)(4-fluorophenyl)  430 >10

5
 

33 H  H  CH(OH)(4-fluorophenyl)  0.32 326 

34 H  H  CH(OH)(4-fluorophenyl)  90 40000 

35 H  H  CH(OH)(4-fluorophenyl)  0.5 628 

36
c
 H  H  CH2(3,5-bis-trifluoromethylphenyl)  587 >10

5
 

37
b,c

 H  H  CH2 (3,5-bis-trifluoromethylphenyl)  6.3 >10
5
 

38
c
 H  H  CH2(2-pyridyl)  132 >10

5
 

39 H  H  CH2(2-pyridyl)  0.4 5000 
a
Concentration of a compound to bring out 50% inhibition (IC50), taken from reference [737]; 

b
Compound included in test set; 

c
Compound with uncertain activity, not part of data set for DDP-

8. 

2.3.1. RESULTS AND DISCUSSION 

2.3.1.1. QSAR RESULTS 

 A total number of 158 significant 3D-molecular descriptors have been 

subjected to CP-MLR analysis. These 158 descriptors were finally obtained after 

the exclusion of those descriptors which were intercorrelated beyond 0.90 and 

showing a correlation of <0.1 with the biological endpoints among a total number 

of 673 descriptors.  Statistical models in two, three and four descriptor(s) have 

been derived successively to achieve the best relationship correlating DPP-4 

inhibitory activity. A total number of 10, 20 and 22 models in two, three and four 

descriptors, respectively, were obtained through CP-MLR. These models (with 

158 descriptors) were identified in CP-MLR by successively incrementing the 

filter-3 with increasing number of descriptors (per equation). For this, the 

optimum r-bar value of the preceding level model has been used as the new 
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threshold of filter-3 for the next generation. The selected models in two, three and 

four descriptors are given below. 

pIC50 = 7.563 – 3.848(0.768)RDF075m + 6.324(1.145)RDF085m   

n = 29, r = 0.765, s = 0.722, F = 18.405, Q
2

LOO = 0.499, Q
2

L5O = 0.503 

r
2

Test = 0.372, FIT = 1.115, LOF = 0.629, AIC = 0.642                            (3.29) 

pIC50 = 7.642 – 3.011(0.737)RDF075m + 2.883(0.568)RDF105p  

n = 29, r = 0.740, s = 0.754, F = 15.752, Q
2

LOO = 0.469, Q
2

L5O = 0.465 

r
2

Test = 0.165, FIT = 0.954, LOF = 0.687, AIC = 0.701                 (3.30) 

pIC50 = 8.702 – 5.173(0.780)RDF075m + 6.241(0.985)RDF085m 

– 1.785(0.560)G3e  

n = 29, r = 0.840, s = 0.621, F = 19.979, Q
2

LOO = 0.615, Q
2

L5O = 0.603 

r
2

Test = 0.646, FIT = 1.577, LOF = 0.528, AIC = 0.509                 (3.31) 

pIC50 = 10.050 – 2.942(0.734)DISPv + 3.853(0.976)RDF085m  

– 3.848(0.602)RDF110e  

n = 29, r = 0.833, s = 0.631, F = 19.029, Q
2

LOO = 0.588, Q
2

L5O = 0.538 

r
2

Test = 0.505, FIT = 1.502, LOF = 0.547, AIC = 0.526                (3.32) 

pIC50 = 5.359 –2.502(0.665)RDF075m + 4.134(0.557)RDF085p 

+ 1.904(0.474)Mor10m + 2.268(0.534)RTu+  

n = 29, r = 0.889, s = 0.534, F = 22.626, Q
2

LOO = 0.696, Q
2

L5O = 0.615 

r
2

Test = 0.684, FIT = 2.011, LOF = 0.451, AIC = 0.405                (3.33) 

pIC50 = 6.016 –1.956(0.525)RDF110e + 2.590(0.414)RDF105p   

+ 2.139(0.497)Mor10m + 1.442(0.516)RTp+  

n = 29, r = 0.877, s = 0.560, F = 20.083, Q
2

LOO = 0.621, Q
2

L5O = 0.633 

r
2

Test = 0.525, FIT = 1.785, LOF = 0.495, AIC = 0.444                 (3.34) 

 In the randomization study (100 simulations per model), none of the 

identified models has shown any chance correlation. Most of the participated 
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descriptors RDF075m, RDF085m, RDF110e, RDF085p and RDF105p in above 

models belong to RDF descriptors class. 

 RDF (Radial Distribution Function) descriptors [738] are based on a radial 

distribution function that may be considered as the probability distribution of 

finding an atom in a spherical volume of radius (R). The RDF descriptors are 

represented as RDFkw where k is step size and w is weighting scheme such as the 

unweighted case (u), atomic mass (m), the van der Waals volume (v), the 

Sanderson atomic electronegativity (e) and the atomic polarizability (p). The RDF 

descriptors not only provide information about interatomic distances in the whole 

molecule but bond distances, atom types, ring types and planar and non-planar 

systems also. Atomic masses weighted radial distribution function 7.5 (descriptor 

RDF075m) and  atomic Sanderson electronegativities weighted radial distribution 

functions 11.0 (descriptor RDF110e) contributed negatively to the activity 

suggesting that a higher values of these radial distribution functions would be  

detrimental to DPP-4 inhibition actions. On the other hand positive contribution 

of radial distribution function-8.5/ weighted by atomic masses (descriptor 

RDF085m) and atomic polarizabilities weighted radial distribution functions 8.5 

and 10.5 (RDF085p and RDF105p, respectively) advocated a higher value of 

these to augment the inhibitory activity.  

 Descriptor DISPv is representative of geometrical class of descriptors. 

Geometrical descriptors are derived from the three-dimensional structure of the 

molecule and calculation of these is based on some optimized molecular geometry 

obtainable by the methods of the computational chemistry or on crystallographic 

coordinates. Geometrical descriptors offer more information and discrimination 

power for similar molecular structures and molecule conformations because a 

geometrical representation of a molecule involves the knowledge of the relative 

positions of the atoms in 3D space. Descriptor DISPv is among the COMMA2 

descriptors [739]. COMMA2 descriptors are given by moment expansions for 

which the zero-order moment of a considered property (such as mass (m), van der 
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Waals volume (v), Sanderson electronegativity (e) and polarizability (p)) field is 

non-vanishing. The negative contribution of descriptor DISPv (the displacement 

between the geometric centre and the centre of the van der Waals volume field, 

calculated with respect to the molecular principal axes) hints that a lower value of 

it would be beneficiary to the activity.  

 Descriptor Mor10m is a 3D-MoRSE (3D-Molecule Representation of 

Structures based on Electron diffraction) descriptor [740]. These descriptors 

(Morsw) represent the scattered electron intensity (signals). The term s represents 

the scattering in various directions by a collection of atoms and w is the atomic 

property or may be unweighted case. The positive contribution of 3D-MoRSE - 

signal 10/ weighted by atomic masses (Mor10m) suggests that a higher value of it 

would be incremental to the activity. 

 Descriptors RTu+ and RTp+ are from the GETAWAY (GEometry, 

Topology, and Atom-Weights AssemblY) class of descriptors. GETAWAYs 

[741] are geometrical descriptors which encode information on the effective 

position of substituents and fragments in the molecular space. These descriptors 

are independent of molecule alignment and account for information on molecular 

size and shape and for specific atomic properties. Both the descriptors RTu+ 

(unweighted R maximal index) and RTp+ (atomic polarizabilities weighted R 

maximal index) shown positive correlation to the activity advocating higher 

values of these for augmented activity.  

 The remaining descriptor G3e is a Weighted Holistic Invariant Molecular 

(WHIM) descriptor. These descriptors are geometrical descriptors and are based 

on statistical indices calculated on the projections of the atoms along principal 

axes [742]. WHIM descriptors are free from prior alignment of molecules because 

these are invariant to translation and rotation. WHIM descriptors (categorized as 

directional and global) furnish relevant molecular 3D information about 

molecular size, shape, symmetry, and atom distribution with respect to invariant 

reference frames. The appeared WHIM descriptor, G3e (3
rd

 component symmetry 
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directional WHIM index/weighted by atomic Sanderson electronegativities) 

correlated negatively to the activity suggesting lower value of it for elevated DPP-

4 activity.  

 The four descriptor models could estimate nearly 79% in observed activity 

of the compounds. Considering the number of observations in the dataset, models 

with up to five descriptors were explored. It has resulted in 4 five-parameter 

models with test set r
2
 > 0.50. These models have shared 10 descriptors among 

them. All these 10 descriptors along with their brief meaning, average regression 

coefficients, and total incidence are listed in Table 3.13, which will serve as a 

measure of their estimate across these models.  

Table 3.13: Identified descriptors
a
 along with their physical meaning, average 

regression coefficient and incidence
b
, in modeling the DPP-4 inhibitory activity of 

triazolopiperazines.  

S. 

No. 

Descriptor 

class  
Descriptor  

Physical meaning, average regression  

coefficient (incidence) 

1 Geometrical 

descriptors 
DISPv d COMMA2 value /weighted by atomic  

van der Waals volumes, -1.712(1) 

2 RDF 

descriptors 

 

 

 

 

 

 

RDF075m Radial distribution function at 7.5 Å /  

weighted by atomic masses, -4.112(1) 

3 RDF085m Radial Distribution Function at 8.5 Å / 

weighted by atomic polarizabilities, 

5.814( 1) 

4 RDF110e Radial Distribution Function at 11.0 Å /  

weighted by atomic Sanderson 

electronegativities, -2.674(3) 

5 RDF155e Radial Distribution Function at 15.5 Å /  

weighted by atomic Sanderson 

electronegativities, -2.016(1) 

6 RDF085p Radial Distribution Function at 8.5 Å /  

weighted by atomic polarizabilities 

2.874(3) 

7 3D-MoRSE 

descriptors 
Mor10m 3D-MoRSE - signal 10 / weighted by 

atomic masses, 1.977(4) 

8 Mor12m 3D-MoRSE - signal 12 / weighted by 

atomic masses, 1.622(2) 

9 WHIM 

descriptors 
G3e 3

rd
 component symmetry directional 

WHIM index /weighted by atomic 
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Sanderson electronegativities, -1.879(1) 

10 GETAWAY 

descriptor 
RTu+ R maximal index / unweighted, 

1.613(3) 
a
The descriptors are identified from the five parameter models, emerged from CP-MLR protocol 

with filter-1 as 0.79, filter-2 as 2.0, filter-3 as 0.869, and filter-4 as 0.3 ≤ q
2
 ≤1.0 with a training set 

of 29 compounds. 
b
The average regression coefficient of the descriptor corresponding to all 

models and the total number of its incidence. The arithmetic sign of the coefficient represents the 

actual sign of the regression coefficient in the models. 

 Following are the emerged five-descriptor models for the DPP-4 

inhibitory activity of titled compounds. 

pIC50 = 7.266 – 1.712(0.685)DISPv – 2.653(0.634)RDF110e  

+ 3.126(0.567)RDF085p + 1.564(0.507)Mor10m + 1.795(0.570)RTu+  

n = 29, r = 0.900, s = 0.518, F = 19.774, Q
2

LOO = 0.668, Q
2

L5O = 0.680 

r
2

Test = 0.606, FIT = 1.830, LOF = 0.496, AIC = 0.409                (3.35) 

pIC50 = 5.240 – 2.398(0.595)RDF110e + 3.094(0.581)RDF085p  

+ 2.392(0.481)Mor10m + 1.436(0.603)Mor12m + 1.740(0.586)RTu+  

n = 29, r = 0.898, s = 0.523, F = 19.296, Q
2

LOO = 0.715, Q
2

L5O = 0.726 

r
2

Test = 0.512, FIT = 1.786, LOF = 0.506, AIC = 0.417                           (3.36) 

pIC50 = 6.452 – 2.969(0.510)RDF110e – 2.016(0.719)RDF155e  

+ 2.402(0.505)RDF085p + 2.802(0.501)Mor10m + 1.809(0.580)Mor12m  

n = 29, r = 0.895, s = 0.531, F = 18.573, Q
2

LOO = 0.711, Q
2

L5O = 0.690 

r
2

Test = 0.735, FIT = 1.719, LOF = 0.522, AIC = 0.430                      (3.37) 

pIC50 = 7.507 – 4.112(0.760)RDF075m + 5.814(0.901)RDF085m  

+ 1.151(0.497)Mor10m – 1.879(0.485)G3e + 1.303(0.500)RTu+  

n = 29, r = 0.894, s = 0.533, F = 18.437, Q
2

LOO = 0.611, Q
2

L5O = 0.638 

r
2

Test = 0.670, FIT = 1.707, LOF = 0.525, AIC = 0.432                (3.38) 

 The newly appeared descriptors in above models are RDF155e (a RDF 

class descriptor) and Mor12m (from 3D-MoRSE class). The signs of regression 

coefficients of these descriptors suggest that a lower value of radial distribution 

function – 15.5/weighted by atomic Sanderson electronegativities (descriptor 
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RDF155e) and a higher value of 3D-MoRSE - signal 12/ weighted by atomic 

masses (descriptor Mor12m) would be incremental to the activity. In this way the 

descriptors identified for rationalizing the activity give avenues to modulate the 

structure to a desirable biological endpoint. 

 These models have accounted for nearly 81% variance in the observed 

activities. In the randomization study (100 simulations per model), none of the 

identified models has shown any chance correlation. The values greater than 0.5 

of Q
2 

index is in accordance to a reasonable robust QSAR model. The pIC50 

values of training set compounds calculated using Eqs. (3.35) to (3.38) and 

predicted from LOO procedure have been included in Table 3.14.  

Table 3.14: Observed and modeled DPP-4 inhibitory activities.  

S. 

No. 

   pIC50(M)
a
   

Obs
b
 

Eq. (3.35) Eq. (3.36) Eq. (3.37) Eq. (3.38) PLS 

Cal Pre
c
 Cal Pre

c
 Calc Pre

c
 Cal Pre

c
 Cal Pre

c
 

1
d
 7.74 8.48 -

d
 8.42 -

d
 8.19 -

d
 7.59 -

d
 8.18 -

d
 

2 7.64 7.37 7.32 7.60 7.60 7.65 7.65 7.54 7.53 7.50 7.49 

3 7.85 8.21 8.29 8.05 8.08 7.96 7.98 7.76 7.75 8.08 8.11 

4 7.04 6.96 6.94 6.67 6.52 6.87 6.79 7.27 7.28 6.68 6.64 

5 7.38 7.32 7.31 7.65 7.68 7.38 7.38 7.73 7.76 7.43 7.44 

6
d
 7.06 7.65 -

d
 7.63 -

d
 6.82 -

d
 7.74 -

d
 7.39 -

d
 

7 8.37 8.03 7.98 8.03 7.97 7.99 7.94 8.69 8.75 8.33 8.33 

8 7.04 7.11 7.15 6.86 6.73 6.97 6.93 7.47 7.70 7.04 7.04 

9 6.76 7.02 7.17 6.89 6.95 7.19 7.31 6.61 6.54 6.86 6.87 

10
d
 7.00 6.64 -

d
 7.12 -

d
 7.24 -

d
 7.42 -

d
 6.99 -

d
 

11
d
 6.68 7.00 -

d
 6.89 -

d
 6.97 -

d
 7.39 -

d
 6.97 -

d
 

12 7.92 7.74 7.72 7.55 7.50 7.60 7.56 7.69 7.67 7.65 7.62 

13 7.96 7.90 7.89 7.77 7.75 7.68 7.65 8.00 8.01 7.89 7.87 

14 6.95 7.18 7.20 7.53 7.57 7.70 7.75 7.81 7.87 7.59 7.63 

15 8.30 7.97 7.94 7.90 7.87 8.08 8.06 7.64 7.60 7.83 7.80 

16 6.91 6.92 6.93 6.83 6.81 6.44 6.36 6.89 6.89 6.74 6.72 

17 8.24 8.32 8.33 8.16 8.15 8.42 8.44 7.63 7.36 7.92 7.86 

18 8.82 8.52 8.42 8.42 8.27 7.82 7.74 8.70 8.66 8.42 8.39 

19 7.49 8.27 8.36 8.43 8.56 8.37 8.49 8.12 8.21 8.38 8.45 

20 6.42 7.24 7.71 7.88 8.03 7.44 7.68 6.70 6.77 6.89 6.94 

21
d
 8.55 7.67 -

d
 7.59 -

d
 7.60 -

d
 7.45 -

d
 7.40 -

d
 

22 6.85 7.03 7.06 6.77 6.76 6.64 6.61 6.55 6.50 6.70 6.68 

23 9.18 9.60 9.72 9.24 9.26 9.28 9.32 9.33 9.37 9.48 9.54 
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24 6.49 6.67 6.74 6.75 6.85 6.36 6.27 6.07 5.91 6.39 6.35 

25 9.37 9.48 9.54 8.94 8.81 8.93 8.80 8.98 8.87 9.29 9.24 

26
d
 6.36 7.83 -

d
 8.07 -

d
 6.61 -

d
 6.86 -

d
 7.06 -

d
 

27
d
 9.51 9.43 -

d
 9.17 -

d
 8.74 -

d
 9.13 -

d
 8.94 -

d
 

28
d
 6.88 7.51 -

d
 7.60 -

d
 7.76 -

d
 6.60 -

d
 7.26 -

d
 

29
d
 9.34 9.40 -

d
 9.49 -

d
 9.17 -

d
 8.98 -

d
 9.44 -

d
 

30 6.94 5.96 5.68 6.63 6.44 6.96 6.98 6.15 5.96 6.53 6.48 

31 9.74 8.31 8.02 8.56 8.19 9.19 9.04 9.00 8.70 9.07 8.97 

32 6.37 6.52 6.54 6.51 6.53 7.14 7.28 6.84 6.96 6.73 6.82 

33 9.49 9.57 9.62 9.91 10.11 10.09 10.35 9.34 9.30 9.73 9.81 

34 7.05 7.43 7.50 7.16 7.17 7.53 7.58 7.80 7.95 7.69 7.72 

35 9.30 8.68 8.24 9.24 9.20 8.98 8.71 8.75 8.36 8.89 8.78 

36 6.23 6.85 7.24 6.38 6.66 6.27 6.33 7.30 8.24 6.49 6.60 

37
d
 8.20 8.19 -

d
 7.79 -

d
 7.71 -

d
 9.07 -

d
 8.08 -

d
 

38 6.88 6.80 6.79 6.78 6.76 6.65 6.61 6.65 6.61 6.75 6.74 

39 9.40 9.40 9.40 9.29 9.27 8.80 8.64 9.34 9.32 9.41 9.41 
a
On molar basis; 

b
Taken from ref. [737]; 

c
Leave-one-out (LOO) procedure; 

d
Compound included 

in test set.  

 The models (3.35) to (3.38) are validated with an external test set of 10 

compounds listed in Table 3.12. The predictions of the test set compounds based 

on external validation are found to be satisfactory as reflected in the test set r
2
 

(r
2

Test) values and the same is also reported in Table 3.14.  

 A partial least square (PLS) analysis has been carried out on these 10 CP-

MLR identified descriptors (Table 3.13) to facilitate the development of a “single 

window” structure–activity model. In the PLS cross-validation, three components 

are found to be the optimum for these 10 descriptors and they explained 93.9% 

variance in the activity (r
2
 = 0.939, Q

2
LOO = 0.853, s = 0.391, F = 62.879, r

2
Test = 

0.763). The MLR-like PLS coefficients of these 10 descriptors are given in Table 

3.15. The plot showing goodness of fit between observed and calculated activities 

(through Eqs. (3.35) to (3.38) and PLS analysis) for the training and test set 

compounds is given in Figure 3.9. Figure 3.10 shows a plot of the fraction 

contribution of normalized regression coefficients of these descriptors to the 

activity.  
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Figure 3.9: Plot of observed and calculated pIC50 values of training- and test-set 

compounds for DPP-4. 

 

 

 

6
7
8
9

10
11

6 7 8 9 10 11

C
a

lc
. 
 p

IC
5

0
(E

q
. 
3

.3
5

)

Observed pIC50

Training set; Test set

6
7
8
9

10
11

6 7 8 9 10 11

C
a

lc
. 
 p

IC
5

0
(E

q
. 
3

.3
6

)

Observed pIC50

Training set; Test set

6
7
8
9

10
11

6 7 8 9 10 11

C
a
lc

. 
p

IC
5

0
(P

L
S

)

Observed pIC50

Training set; Test set

6
7
8
9

10
11

6 7 8 9 10 11

C
a

lc
. 
p

IC
5

0
(E

q
. 
3
.3

7
)

Observed pIC50

Training set; Test set

6
7
8
9

10
11

6 7 8 9 10 11

C
a

lc
. 
p

IC
5

0
(E

q
. 
3
.3

8
)

Observed pIC50

Training set; Test set



 

 

180 

 

Table 3.15: PLS and MLR-like PLS models from the descriptors of five 

parameter CP-MLR models for DPP-4 inhibitory activity.   

 

A: PLS equation 

PLS components PLS coefficient (s.e.)
a
 

Component-1 -0.859(0.064) 

Component-2 0.091(0.036) 

Component-3 0.182(0.069) 

Constant 7.737 

B: MLR-like PLS equation 

S. No. Descriptor MLR-like coefficient (f.c.)
b
 Order  

1 DISPv -0.159(-0.057) 9 

2 RDF075m -0.339(-0.122) 3 

3 RDF085m 0.314(0.113) 5 

4 RDF110e -0.449(-0.162) 1 

5 RDF155e -0.092(-0.033) 10 

6 RDF085p 0.333(0.120) 4 

7 Mor10m 0.361(0.130) 2 

8 Mor12m 0.220(0.079) 8 

9 G3e -0.226(-0.081) 7 

10 RTu+ 0.272(0.098) 6 

Constant  7.196 

C: PLS regression statistics Values 

n 29 

r 0.939 

s 0.391 

F 62.879 

FIT 4.964 

LOF 0.210 

AIC 0.202 

Q
2

LOO 0.853 

Q
2

L5O 0.858 

r
2

Test 0.763 
a
Regression coefficient of PLS factor and its standard error. 

b
Coefficients of MLR-like PLS 

equation in terms of descriptors for their original values; f.c. is fraction contribution of regression 

coefficient, computed from the normalized regression coefficients obtained from the autoscaled 

(zero mean and unit s.d.) data. 
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Figure 3.10: Plot of fraction contribution of MLR-like PLS coefficients 

(normalized) against ten CP-MLR identified descriptors (Table 3.15) associated 

with DPP-4 inhibitory activity of triazolopiperazines.  

 The PLS analysis has suggested RDF110e as the most determining 

descriptor for modeling the activity of the compounds (descriptor S. No. 4 in 

Table 4; Figure 2). The other nine significant descriptors in decreasing order of 

significance are Mor10m, RDF075m, RDF085p, RDF085m, RTU+, G3e, 

Mor12m, DISPv and RDF155e. All descriptors are part of Eqs. (3.29) to (3.38) 

and convey same inference in the PLS model as well. It is also observed that PLS 

model from the dataset devoid of 10 descriptors (Table 3.13) is inferior in 

explaining the activity of the analogues. 

 The other inhibitory activity reported for DPP-8 enzyme system has also 

analyzed quantitatively. A total number of 10 models in two parameters and 46 

models in three parameters, having r
2

Test > 0.5, were obtained on applying CP-

MLR. For the sake of brevity, highly significant four models in three parameters 

emerged through CP-MLR are shown below. 
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n = 19, r = 0.915, s = 0.390, F = 25.793, Q
2

LOO = 0.741, Q
2

L5O = 0.738 

r
2

Test = 0.523, FIT = 2.763, LOF = 0.257, AIC = 0.234                (3.39) 

pIC50 = 3.847 + 2.302(0.325)RDF085m – 1.778(0.726)RDF150p  

+ 1.237(0.479)Mor10m  

n = 19, r = 0.906, s = 0.409, F = 23.001, Q
2

LOO = 0.747, Q
2

L5O = 0.724 

r
2

Test = 0.697, FIT = 2.464, LOF = 0.283, AIC = 0.257                (3.40) 

pIC50 = 7.192 + 2.588(0.594)RDF115m – 5.919(1.176)Mor23m  

– 1.685(0.728)E3e  

n = 19, r = 0.905, s = 0.411, F = 22.788, Q
2

LOO = 0.709, Q
2

L5O = 0.756 

r
2

Test = 0.577, FIT = 2.441, LOF = 0.285, AIC = 0.259                (3.41) 

pIC50 = 9.741 – 1.025(0.450)RDF145p – 8.388(1.092)Mor23m  

– 1.702(0.442)H5m  

n = 19, r = 0.900, s = 0.422, F = 21.355, Q
2

LOO = 0.703, Q
2

L5O = 0.719 

r
2

Test = 0.574, FIT = 2.288, LOF = 0.300, AIC = 0.273                           (3.42) 

 It is evident from the models that higher values of atomic mass weighted 

radial distribution functions 8.5 and 11.5 (descriptors RDF085m and RDF115m, 

respectively), and lower values of atomic polarizabilities weighted radial 

distribution functions 14.5 and 15.0 (descriptors RDF145p and RDF150p, 

respectively) would supplement the activity. Atomic mass weighted 3D-MoRSE 

signals 10 and 23 (descriptors Mor10m and Mor23m, respectively) in addition to 

atomic polarizabilities weighted 10 (descriptor Mor10p) have shown prevalence 

to explain the DPP-8 inhibitory activity. A higher value of descriptors Mor10p 

and Mor10m is conducive to activity whereas a higher value of descriptor 

Mor23m is unfavorable to the activity. The negative correlation of WHIM 

descriptor (E3e, 3
rd

 component accessibility WHIM index/ weighted by atomic 

Sanderson electronegativities) and physicochemical properties weighted spatial 

autocorreation GETAWAY descriptor (H5m, H autocorrelation of lag 5/weighted 
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by atomic masses) recommended a lower value of these descriptors for elevated 

DPP-8 inhibitory activity. These models are able to explain nearly 84% variance 

in the observed DPP-8 inhibitory activities. None of the identified models has 

shown any chance correlation in the randomization study (100 simulations per 

model). The values greater than 0.5 of Q
2 

index is in accordance to a reasonable 

internal validation and r
2

Test values reflect upon the good predictive power of 

above mentioned QSAR models. The pIC50 values of training and test set 

compounds calculated using Eqs. (3.39) to (3.42) and predicted from LOO 

procedure have been included in Table 3.16. The goodness of fit or agreement 

between observed and calculated activities for the training and test set compounds 

is shown in Figure 3.11. 

Table 3.16: Observed and modeled DPP-8 inhibitory activities. 

S. 

No. 

  pIC50(M)
a
   

Obsd
b
 

Eq. (3.39) Eq. (3.40) Eq. (3.41) Eq. (3.42) 

Calc Pred
c
 Calc Pred

c
 Calc Pred

c
 Calc Pred

c
 

1
d
 4.32 4.51 -

d
 4.35 -

d
 4.25 -

d
 4.96 -

d
 

2 4.64 4.55 4.53 4.21 4.10 4.67 4.68 4.74 4.75 

3 4.48 4.01 3.91 4.13 4.07 4.41 4.39 4.31 4.27 

4
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

5 4.12 4.49 4.60 4.32 4.38 4.30 4.34 4.18 4.21 

6
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

7 4.77 4.96 4.99 4.96 4.99 4.81 4.81 5.08 5.18 

8 4.18 4.55 4.62 4.74 4.80 4.17 4.17 4.22 4.23 

9 5.22 4.75 4.50 4.54 4.33 4.81 4.62 5.58 5.61 

10
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

11
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

12 4.15 4.24 4.26 4.33 4.35 4.37 4.40 4.30 4.33 

13 4.36 4.78 4.81 4.87 4.90 4.63 4.65 4.42 4.43 

14
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

15 5.10 4.79 4.76 4.85 4.82 4.56 4.49 4.94 4.91 

16
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

17 5.80 5.52 5.48 5.75 5.74 5.71 5.69 5.27 5.05 

18 5.52 4.99 4.89 5.07 5.00 5.05 4.94 4.85 4.76 

19 4.14 4.94 5.02 4.98 5.07 4.73 4.97 4.29 4.33 

20
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

21
d
 4.52 4.38 -

d
 4.88 -

d
 4.19 -

d
 4.89 -

d
 

22 -
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
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23 6.21 6.11 6.09 6.04 6.00 5.58 5.51 6.18 6.17 

24 -
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

25 6.44 6.49 6.51 6.52 6.54 6.72 6.85 6.56 6.60 

26
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

27
d
 5.10 5.08 -

d
 5.66 -

d
 5.89 -

d
 5.42 -

d
 

28
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

29
d
 5.96 5.08 -

d
 5.67 -

d
 5.98 -

d
 6.28 -

d
 

30
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

31 6.48 6.42 6.40 6.35 6.30 6.53 6.55 6.51 6.52 

32
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

33 6.49 6.76 6.92 6.43 6.42 6.53 6.56 6.08 5.80 

34 4.40 4.63 4.72 4.57 4.66 5.29 5.55 5.52 5.74 

35 6.20 5.95 5.88 6.19 6.18 5.96 5.89 5.86 5.80 

36
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

37
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

38
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

39 5.30 5.07 4.76 5.16 4.96 5.16 5.13 5.10 5.00 
a
On molar basis; 

b
Taken from ref. [737]; 

c
Leave-one-out (LOO) procedure; 

d
Compound included 

in test set and 
e
Compound with uncertain activity, not part of data set.  

     

     

Figure 3.11: Plot of observed and calculated pIC50 values for DPP-8. 
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2.3.1.2. Applicability domain (AD) 

 On analyzing the model AD in the Williams plot (Figure 3.12) of the 

model based on the whole dataset (Table 3.17), it has appeared that none of the 

compounds were identified as an obvious outlier for the DPP-4 inhibitory activity 

if the limit of normal values for the Y outliers (response outliers) was set as 3 

(standard deviation) units. One of the compounds (S. No. 37, Table 3.12) was 

found to have leverage (h) values greater than the threshold leverages (h*) in a 

plot derived for Eqn. (3.38a) reflecting it as a chemically influential compound.  

     

     

Figure 3.12: Williams plot for the training-set and test- set compounds for DPP-4 

inhibitory activity. The horizontal dotted line refers to the residual limit 

(±3×standard deviation) and the vertical dotted line represents threshold leverage 

h* (= 0.46).   
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Table 3.17: Models derived for the whole data set (n = 39) for the DPP-4 

inhibitory activity in descriptors identified through CP-MLR.  

Model r s F Eq. 

pIC50 = 7.197 – 1.490(0.627)DISPv  

–2.823(0.602)RDF110e +1.505(0.497)Mor10m 

+3.198(0.527)RDF085p  + 1.662(0.587)RTu+   

0.875 0.559 21.562 (3.35a) 

pIC50 = 5.414 – 2.495(0.586)RDF110e  

+3.383(0.537)RDF085p +2.209(0.474)Mor10m  

+ 0.864(0.530)Mor12m + 1.788(0.608)RTu+   

0.863 0.582 19.383 (3.36a) 

pIC50 = 6.582 – 3.073(0.427)RDF110e  

–2.047(0.468)RDF155e +2.889(0.448)Mor10m 

+2.772(0.419)RDF085p +1.321(0.459)Mor12m  

0.892 0.520 25.914 (3.37a) 

pIC50 = 7.778 – 4.456(0.682)RDF075m  

+5.559(0.715)RDF085m+1.223(0.463)Mor10m  

– 2.183(0.455)G3e + 1.251(0.485)RTu+  

0.880 0.547 22.780 (3.38a) 

 

 For both the training set and test set, the suggested model matches the 

high-quality parameters with good fitting power and the capability of assessing 

external data. Furthermore, almost all of the compounds was within the AD of the 

proposed model and were evaluated correctly. 

2.3.3. CONCLUSIONS 

 The DPP-4 and DPP-8 inhibitory activity of triazolopiperazines have been 

quantitatively analyzed in terms of 3D-Dragon descriptors. The derived QSAR 

models have shown that atomic properties played pivotal role in terms of 

weighted radial distribution functions, 3D-MoRSE signals, component symmetry 

directional WHIM index and moment expansions. The CP-MLR indentified RDF, 

3D-MoRSE, WHIM and GETAWAY descriptors weighted or unweighted with 

atomic properties endow relevant molecular 3D information about molecular size, 

shape, symmetry, atom distribution, effective position of substituents and 

fragments in the molecular space hold promise for rationalizing the DPP-4 and 

DPP-8 inhibitory actions of triazolopiperazines. The values of statistical 

parameters, Q
2

LOO and r
2

Test ensure that the models have validated internally and 

externally, both and the predictions are reliable and acceptable. PLS analysis has 

further confirmed the dominance of the CP‐MLR identified descriptors. 
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 Applicability domain analysis revealed that the suggested models have 

acceptable predictability. All the compounds are within the applicability domain 

of the proposed models and were evaluated correctly. 
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CHAPTER 4 

QSAR STUDIES ON PPAR AGONISTS 

1. INTRODUCTION 

 Elevated plasma glucose in the presence of high endogenous insulin 

levels is characteristic of type 2 diabetes (T2D). T2D is a complex metabolic 

disorder because insulin resistance and impaired insulin secretion lead to 

abnormal metabolism of glucose, lipids and amino acids. The quality of life of 

diabetic patients slowly decreases due to developed long-term micro- and 

macro- vascular complications like neuropathy, retinopathy, nephropathy, 

myocardial infarction, stroke, and lower limb amputation as the progression of 

the disease progresses [743, 744]. Thus, T2D come with a defect in pancreatic 

β-cell and is characterized by resistance of insulin in the liver and peripheral 

tissues [745] and due to lack of physical activity and excessive food intake, is 

presumed to attain epidemic proportions [746], become a chronic metabolic 

disorder. The prevalence of T2D in developed and developing countries is 

rising speedily and it is expected that number of diabetics to reach 380 million 

by 2025 [747, 748].  

 The treatment of T2D is currently aimed at to improve insulin 

secretion by reducing hyperglycemia or to reduce the insulin resistance of 

peripheral tissues. Most of such types of commonly used therapies were 

developed without considering therapeutic target. Therefore, attempts were 

made to identify more suitable therapeutic strategies with better insight of the 

disease’s pathogenesis [749]. Peroxisomes proliferators activated receptors 

(PPARs), belonging to the family of nuclear receptors, are ligand-activated 

transcription factors [750]. Three subtypes namely PPARα, PPARγ and 

PPARβ/(δ) have been identified after the discovery in 1990 by Issemen and 

Green [751]. These receptors are extensively involved in glucose and lipid 

homeostasis [752-754]. A number of agonists in this class have progressed to 

the clinical phase and marketed as anti-diabetic drugs [755, 756].  Among the 

PPAR subtypes the most extensively investigated subtype is PPARγ. 

2. MODELING STUDIES  
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2.1. 4,4-DIMETHYL-1,2,3,4-TETRAHYDROQUINOLINES AS PARα/γ 

       AGONIST 

 In present era of drug development, the hypolipidemic fibrates and 

glitazones class of insulin sensitizers, full-agonists of PPARα [750] and 

PPARγ [757, 758], respectively, has motivated pharmaceutical companies to 

focus on developing more potent and dual acting agonists belonging to these 

two subtypes. In the treatment of dyslipidemic T2D dual-acting PPARα/γ 

agonists such as Tesaglitazar and Muraglitazar have been observed as a very 

attractive option [752, 756, 759-764]. These compounds may also circumvent 

or reduce the main side effects such as weight gain or edema induced by the 

full PPARγ agonists like TZDs [765]. The ligand–protein interactions of a 

typical PPAR agonists revealed that the acidic head group of ligand, known as 

carboxylic acid, is involved in up to four hydrogen bonds with the receptor 

which is crucial part for activation of PPAR. The central aromatic moiety is 

located in a hydrophobic pocket while the cyclic tail tolerates more polar 

substituents [754].  Based on the typical topology of synthetic PPAR agonists 

4,4-dimethyl-1,2,3,4-tetrahydroquinoline has been considered as novel cyclic 

tail to design novel PPARγ selective agonists and/or dual PPARα/γ agonists 

[766]. A new series of 4,4-dimethyl-1,2,3,4-tetrahydroquinoline-based 

compounds as effective PPARγ selective agonists and dual-acting agonists of 

PPARα and PPARγ has been reported [767, 768].   

 The reported eighteen tetrahydroquinoline derivatives are considered 

as the data set for this study [767, 768]. The structures of these analogues are 

given in Table 4.1. These derivatives were evaluated for binding affinity to 

human PPARγ using a competitive binding assay with [
3
H]Rosiglitazone. 

Functional activity was determined in a transient transfection assay using 

pGAL4hPPARα and pGAL4hPPARγ [767, 768].  

 The reported binding affinity in terms of pKi(M) and transactivation 

activity in terms of pEC50(M) of these congeners is presented in Table 4.2.  
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Table 4.1: Structures
a
 of tetrahydroquinoline derivatives. 

Cpd. Structure Cpd. Structure 

1
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a
Taken from reference [767, 768],  

b
Rosiglitazone and 

c
Tesaglitazar. 

  

Table 4.2: Reported biological actions of tetrahydroquinoline derivatives. 

Cpd. Obsd.
a
 Cpd. Obsd.

a
 

Binding Transactivation Binding Transactivation 

PPARγ hPPARα hPPARγ PPARγ hPPARα hPPARγ 

pKi (M)
b
 pEC50(M)

c
 pKi (M)

b
 pEC50(M)

c
 

1 8.10 5.00 8.40 10 7.05 6.71 7.19 

2 7.74 6.38 7.43 11
d
 7.74 6.94 8.11 

3 5.00 -
e
 6.82 12 7.27 7.14 7.89 

4
 

5.00 -
e
 6.71 13 7.74 7.47 8.15 

5 6.21 6.72 7.32 14
d
 6.60 8.05 8.12 

6 5.00 7.52 7.72 15 -
e
 -

e
 -

e
 

7
d
 5.00 7.54 7.85 16 7.48 6.00 6.90 

8
d 

7.32 7.92 7.96 17 7.27 5.00 7.85 

9 -
e
 7.54 7.85 18 -

e
 -

e
 5.00 

a
Taken from ref. [767, 768];

 b
On molar basis, Ki represents the binding affinity to human 

PPARγ; cOn molar basis; dCompound included in test set; and eInactive compound, not part of 

data set. 
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 For modeling purpose the data set has been sub-divided into training 

set (for model development) and test set (for external prediction or validation). 

The selection of test set compounds was made using an in-house written 

randomization program. The test and training set compounds are mentioned in 

Table 4.2.  

2.1.1. RESULTS AND DISCUSSION 

2.1.1.1. QSAR RESULTS 

 For the compounds in Table 4.1, a total number of 479 descriptors 

belonging to 0D- to 2D- classes of DRAGON have been computed and were 

subjected to CP-MLR analysis. Descriptors which are inter-correlated beyond 

0.9 (descriptor vs. descriptor, r > 0.9) and poorly correlated with biological 

actions (descriptor vs. activity, r < 0.1) has been excluded prior to the 

application of CP-MLR procedure. In this way the reduced descriptor data set 

contained 55, 39 and 67 as relevant descriptors for PPARγ binding, and 

hPPARα and hPPARγ transactivation activities, respectively. The descriptors 

have been scaled between the intervals 0 to 1 [769] to ensure that a descriptor 

will not dominate simply because it has larger or smaller pre-scaled value 

compared to the other descriptors and the scaled descriptors would have equal 

potential to influence the QSAR models. 

 Initially, the pEC50 values pertaining to hPPARα and hPPARγ 

transactivation actions were correlated to pKi values corresponding to PPARγ 

binding activity, and pEC50 values pertaining to hPPARα and hPPARγ 

transactivations for all active congeners to confer the diversity between the 

binding and transactivation activities, and hPPARα and hPPARγ 

transactivations. The derived correlations are given below:   

pKi (PPARγ) = -0.465 pEC50 (hPPARα) + 10.122 

n = 13, r = 0.458, s = 0.932, F = 2.927                                                         (4.1) 

pKi (PPARγ)= 1.051 pEC50 (hPPARγ) -1.313 

n = 15, r = 0.484, s = 1.052, F = 3.970                                                         (4.2) 

pEC50 (hPPARγ) = 0.059 pEC50 (hPPARα) +7.362 

n = 14, r = 0.138, s = 0.430, F = 0.232                                                         (4.3) 
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 where n, r, s and F represent respectively the number of data points, the 

multiple correlation coefficient, the standard deviation and the F-ratio between 

the variances of calculated and observed activities. All these equations have 

divulged not very much significant statistical parameter. No correlation 

between EC50 values obtained from transactivation PPARγ tests and Ki values 

from binding tests suggested that these derivatives may have a binding site 

different from the Rosiglitazone binding site. This ensures us that the 

biological actions in terms of binding and or transactivation are independent. 

Therefore, we have considered all types of biological endpoints as the 

dependent variables in the subsequent parametric analysis. 

 The PPARγ binding activity of titled compounds was 

investigated with 55 relevant 0D-, 1D- and 2D-descriptors. A training set 

consisting 11 compounds was considered for the development of QSAR 

models and test set involving 04 (nearly one-fourth of the total) compounds 

for the external validation of derived significant models. CP-MLR resulted 

one model in one parameter and ten models in two parameters having r
2

Test> 

0.5. These models shared 12 descriptors and are listed in Table 4.3 along with 

their physical meaning, average regression coefficient and total incidences. 

The sign of the regression coefficients indicates the direction of influence of 

explanatory variables in above models. The positive regression coefficient 

associated to a descriptor will augment the activity profile of a compound 

while the negative coefficient will cause detrimental effect to it. 

Table 4.3: Identified descriptors
a
 along with their physical meaning, average 

regression coefficient and incidence
b
, in modeling the binding and 

transactivation activity.  

Descriptor; average regression coefficient  and (incidence) in analysis for the: 

Binding activity Transactivation activity 

PPARγ hPPARα hPPARγ 

Constitutional descriptors (CONST): 

MW; -1.458(1) AMW; -2.340(1) Me; -0.774 (3)   

AMW; 1.565(1),  Me; -1.254(1) RBN; -1.380(1)   

Me;  1.078(1)   

Topological descriptors (TOPO): 
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MAXDP; -1.529(1) MAXDP; -1.943(2) HNar; 1.543 (3)   

X2A; 1.826(1) IC1; -2.188(2) IVDE; -2.034(1) 

T(N..O); -1.760(1) T(N..N); -2.268(6) IC2; -1.111(1) 

  SIC4; 2.000(1) 

2D autocorrelations (2D-AUTO): 

GATS4v; 1.478(1) MATS7m; -1.546(1) MATS5v; 2.294(3)    

GATS2e; -1.508(1) MATS8m; -1.431(1) MATS8v; 1.333(1)   

 GATS5v; -1.998(1) MATS5e; -1.393(4) 

 GATS6e; 1.326(1) MATS8e; 1.243(6) 

  GATS2e; 0.908(1) 

  GATS6e; 1.316(5)   

  GATS8e; -1.102(1)    

Functional groups (FUNC): 

nCconjR; -1.022(1)  nCs; -0.631(1) 

nROR; 1.006(1)  nCt; 0.827(1)   

nHDon; 2.742(5)   

Atom-centered fragments (ACF): 

O-060; -2.424(6)  C-006;  -1.035(3) 

  C-008; 1.544(8) 

Empirical descriptors (EMP): 

  Hy; 1.529(1) 
aThe descriptors are identified from the two parameter models for PPARγ binding activity and hPPARα 

transactivation activity profiles , emerged from CP-MLR protocol with filter-1 as 0.3, filter-2 as 2.0, 

filter-3 as 0.5 and filter-4 as 0.3 ≤ q2 ≤1.0 with a training set of 11 and 10 compounds, respectively; and 

for PPARγ transactivation activity profile three parameter models  with filter-1 as 0.3, filter-2 as 2.0, 

filter-3 as 0.878 and filter-4 as 0.3 ≤ q2 ≤1.0 with a training set of 13 compounds. bThe average 

regression coefficient of the descriptor corresponding to all models and the total number of its incidence. 

The arithmetic sign of the coefficient represents the actual sign of the regression coefficient in the 

models. CONST: MW, molecular weight;  AMW; average molecular weight; Me, mean atomic 

Sanderson electronegativity (scaled on Carbon atom); RBN, number of rotatable bonds; TOPO: 

MAXDP maximal electrotopological positive variation; X2A, average connectivity index chi-2; T(N..O), 

sum of topological distances between N..O; T(N..N), sum of topological distances between N..N; HNar, 

Narumi harmonic index; IVDE, mean information content vertex degree equality; IC1, information 

content index (neighborhood symmetry of 1-order); IC2, information content index (neighborhood 

symmetry of 2-order); SIC4, structural information content (neighborhood symmetry of 4-order);  2D-

AUTO: MATS7m, Moran autocorrelation of lag-7/ weighted by atomic masses; MATS8m, Moran 

autocorrelation of lag-7/ weighted by atomic masses; MATS5v, Moran autocorrelation of lag-5/ 

weighted by atomic van der Waals  volumes; MATS8v, Moran autocorrelation of lag-8/ weighted by 

atomic van der Waals  volumes; MATS5e, Moran autocorrelation of lag-5/ weighted by atomic 

Sanderson electronegativities; MATS8e, Moran autocorrelation of lag-8/ weighted by atomic Sanderson 

electronegativities; GATS4v, Geary autocorrelation of lag-4/ weighted by atomic van der Waals  

volumes; GATS5v, Geary autocorrelation of lag-5/ weighted by atomic van der Waals  volumes; 

GATS2e, Geary autocorrelation of lag-2/ weighted by atomic Sanderson electronegativities; GATS6e, 

Geary autocorrelation of lag-6/ weighted by atomic Sanderson electronegativities; GATS8e, Geary 

autocorrelation of lag-8/ weighted by atomic Sanderson electronegativities;  FUNC: nCconjR; number 

of exo-conjugated C(sp2);  nROR; number of aliphatic ethers;  nHDon; number of donor atoms for H-

bonds (with N and O); nCs; number of total secondary C(sp3);  nCt; number of total tertiary C(sp3); 

ACF: O-060, Al-O-Ar/Ar-O-Ar/R..O..R/R-O-C=X; C-006, CH2RX; C-008, CHR2X; EMP: Hy, 

hydrophilic factor. 

 The selected highly significant two parameter models, emerged in CP-

MLR for the PPARγ binding activity are given below. 
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pKi = -1.529(0.437)MAXDP + 2.379(0.394)nHDon + 6.328  

n = 11, r = 0.940, s = 0.455, F = 30.721, q
2

LOO = 0.811, 

q
2

L3O = 0.781, r
2

Test= 0.791     (4.4) 

 

pKi = 1.006(0.295)nROR + 2.952(0.396)nHDon + 4.866  

n = 11, r = 0.938, s = 0.462, F = 29.711, q
2

LOO = 0.764, 

q
2

L3O = 0.784, r
2

Test= 0.662    (4.5) 

 

pKi = 1.826(0.534)X2A – 2.258(0.378)O-060 + 7.011  

n = 11, r = 0.934, s = 0.478, F = 27.460, q
2

LOO = 0.813,  

q
2

L3O = 0.810, r
2

Test= 0.603     (4.6) 

 

pKi = 1.565(0.479)AMW – 2.295(0.387)O-060 + 6.892  

n = 11, r = 0.930, s = 0.491, F = 25.847, q
2

LOO = 0.740, 

q
2

L3O = 0.706, r
2

Test= 0.725     (4.7) 

The data within the parentheses are the standard errors associated with 

regression coefficients. The descriptors, participated in above models, are 

from constitutional (AMW), topological (MAXDP and X2A), functional 

group (nHDon and nROR) and atom-centered fragment (O-060) class. 

Constitutional class descriptors are molecular connectivity and conformations 

independent 0D descriptors. The emerged constitutional class descriptor 

AMW (average molecular weight) has shown positive correlation to activity 

favoring high average molecular weight of a molecule for elevated binding 

activity.  

 Topological class descriptors are based on a graph representation of the 

molecule and are numerical quantifiers of molecular topology obtained by the 

application of algebraic operators to matrices representing molecular graphs 

and whose values are independent of vertex numbering or labeling. They can 

be sensitive to one or more structural features of the molecules such as size, 

shape, symmetry, branching and cyclicity and can also encode chemical 

information concerning atom type and bond multiplicity. The negative 

contribution of descriptor MAXDP (maximal electrotopological positive 
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variation) and positive contribution of descriptor X2A (average connectivity 

index, chi-2) suggested that a lower value of descriptor MAXDP and a higher 

value of X2A would be supportive to the activity.  

 Descriptors nHDon and nROR are functional group class descriptors. 

Descriptor nHDon represents number of donor atoms for H-bonds (with N and 

O) and nROR corresponds to number of aliphatic ethers. Presence and or 

higher number of both the types of functionality in a molecular structure 

would be favorable to the binding activity.  

Descriptor O-060 is representative of atom centered fragments (ACF) 

class. ACF class descriptors are based on the counting of 120 atom centered 

fragments, defined by Ghose-Crippen in a molecular structure. Descriptor O-

060 represents Al-O-Ar/Ar-O-Ar/R..O..R/R-O-C=X type fragments in a 

molecular structure. The negative sign of correlation coefficient of this 

descriptor recommends absence of such types of fragments for elevated 

PPARγ binding profile. Based on the total number of incidences, it is also 

clear that descriptors O-060 and nHDon appeared as most relevant descriptors 

to explain the binding profiles of titled compound (Table 4.3).  

In above equations (4.4) to (4.7), the F-values are significant at 99% 

level. Value greater than 0.5 of both the   indices q
2

LOO and q
2

L3O showed 

internal robustness of the models whereas accountability of selected test-set 

for external validation reflected through the r
2

Test values (> 0.5). These models 

are able to estimate up to 88.36 percent of variance in observed activity of the 

compounds. The derived statistical parameters of these four models in two 

parameters have shown the statistically significance, therefore, these models 

were used to calculate the PPARγ binding activity profiles of all the 

compounds and are included in Table 4.4 for the sake of comparison with 

observed ones. A close agreement between them has been observed. 

Additionally, the graphical display, showing the variation of observed versus 

calculated activities is given in Figure 4.1 to ensure the goodness of fit for 

each of these four models. 
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Table 4.4: Observed, calculated and predicted PPARγ binding activities of 

Tetrahydroquinolines. 

Cpd. 

 

pKi (M)
a 

Obs
b
 Eq. (4.4) Eq. (4.5) Eq. (4.6) Eq. (4.7) 

 

PLS 

Cal
c
 Pre

c
 Cal

c
 Pre

c
 Cal

c
 Pre

c
 Cal

c
 Pre

c
 Cal

c
 Pre

c
 

1 8.10 8.35 8.47 7.82 7.60 7.69 7.61 8.46 8.83 8.16 8.19 

2 7.74 7.52 7.46 7.35 7.28 7.71 7.45 7.02 6.66 7.55 7.18 

3 5.00 4.80 4.62 4.87 4.76 4.80 4.68 5.08 5.13 4.83 4.74 

4
 

5.00 5.67 5.85 4.87 4.76 4.75 4.58 5.09 5.15 5.28 5.37 

5 6.21 5.51 5.32 5.87 5.77 6.04 6.01 5.84 5.75 5.70 5.59 

6 5.00 5.50 5.63 5.87 6.14 6.09 6.24 5.75 5.95 5.57 5.71 

7
d
 5.00 5.50 -

d
 5.87 -

d
 6.09 -

d
 5.75 -

d
 5.57 -

d
 

8
d 

7.32 7.34 -
d
 7.35 -

d
 7.27 -

d
 7.07 -

d
 7.13 -

d
 

9
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

10 7.05 7.34 7.39 7.35 7.41 7.27 7.32 7.07 7.08 7.13 7.14 

11
d
 7.74 7.34 -

d
 7.35 -

d
 7.27 -

d
 7.07 -

d
 7.13 -

d
 

12 7.27 7.32 7.33 7.35 7.36 7.38 7.40 7.05 6.98 7.19 7.17 

13 7.74 7.29 7.22 7.35 7.28 7.32 7.24 7.16 7.02 7.21 7.11 

14
d
 6.60 7.31 -

d
 7.35 -

d
 7.17 -

d
 6.97 -

d
 7.15 -

d
 

15
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

16 7.48 7.28 7.25 7.35 7.32 7.74 7.80 7.86 7.96 7.92 8.04 

17 7.27 7.29 7.34 7.82 8.24 7.06 7.00 7.48 7.52 7.33 7.38 

18
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

a
On molar basis, Ki represents the binding affinity to human PPARγ using a competitive 

binding assay with an appropriate radioligand [3H]Rosiglitazone; bTaken from ref. [767, 768]; 
c
Leave-one-out (LOO) procedure; 

d
Compound included in test set and 

e
Compound with 

uncertain activity, not part of data set.  
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Figure 4.1: Plot of observed and calculated pKi values for training- and test-

set compounds. 

 A PLS has also been carried out on 12 descriptors (identified through 

CP-MLR) to support the study. The results of PLS analysis are given in Table 

4.5. For this purpose, the descriptors have been autoscaled (zero mean and unit 

s.d.) to give each one of them equal weight in the analysis. In the PLS 

cross‐validation, two components have been found to be the optimum for these 
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12 descriptors and they explained 91.4 percent variance in the activity (r
2 

= 

0.914). The MLR‐like PLS coefficients of these 12 descriptors are given in 

Table 4.5. The calculated activity values of training- and test-set compounds 

are in close agreement to that of the observed ones and are listed in Table 4.4. 

For the sake of comparison, the plot between observed and calculated 

activities (through PLS analysis) for the training- and test-set compounds is 

given in Figure 4.1.  

Table 4.5: PLS and MLR-like PLS models from the descriptors of two 

parameter CP-MLR models for PPARγ binding affinity.  

A: PLS equation 

PLS components PLS coefficient (s.e.)
a
 

Component-1 0.483(0.057) 

Component-2 0.306(0.077) 

Constant 6.714 

B: MLR-like PLS equation 

S. No. Descriptor MLR-like coefficient (f.c.)
b
 Order  

1 MW 0.025(0.017) 10 

2 AMW 0.118(0.082) 4 

3 Me 0.071(0.049) 7 

4 MAXDP -0.167(-0.116) 3 

5 X2A 0.103(0.071) 5 

6 T(N..O) 0.020(0.014) 11 

7 GATS4v -0.025(-0.018) 9 

8 GATS2e -0.087(-0.060) 6 

9 nCconjR -0.020(-0.014) 12 

10 nROR 0.070(0.048) 8 

11 nHDon 0.364(0.252) 2 

12 O-060 -0.376(-0.260) 1 

Constant  6.529 

C: PLS regression statistics Values 

n 11 

r 0.956 

s 0.392 

F 42.800 

q
2

LOO 0.850 

q
2

L3O 0.887 

r
2

Test 0.762 
aRegression coefficient of PLS factor and its standard error. bCoefficients of MLR-like PLS 

equation in terms of descriptors for their original values; f.c. is fraction contribution of 

regression coefficient, computed from the normalized regression coefficients obtained from 

the autoscaled (zero mean and unit s.d.) data. 
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Figure 4.2 shows a plot of the fraction contribution of normalized regression 

coefficients of these descriptors to the activity (Table 4.5).  

 

Figure 4.2: Plot of fraction contribution of MLR-like PLS coefficients 

(normalized) against 12 identified descriptors (Table 4.5) associated with 

PPARγ binding affinity of the compounds. 

  Descriptors in decreasing order of significance in PLS analysis 

are O-060, nHDon, MAXDP, AMW, X2A, GATS2e, Me, nROR, GATS4v, 

MW, T(N..O) and nCconjR. Among these descriptors, O-060, nHDon, 

MAXDP, AMW, X2A and nRORare part of Equations discussed above and 

convey same inferences in PLS analysis. The positive contributions of 

constitutional class descriptors MW (molecular weight) and Me (mean atomic 

Sanderson electronegativity scaled on Carbon atom); and topological class 

descriptor T(N..O), representing the sum of topological distances between N 

and O atoms advocated that higher values of these are helpful in improving the 

activity profile. Whereas lower values of descriptors GATS4v (Geary 

autocorrelation of lag-4/ weighted by atomic van der Waals volumes), 

GATS2e (Geary autocorrelation of lag-2/ weighted by atomic Sanderson 

electronegativities) and number of exo-conjugated C(sp2) (descriptornCconjR) 

would be supportive to enhance the activity. It is also observed that PLS 
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model from the dataset devoid of 12 descriptors (Table 4.5) remained inferior 

in explaining the activity of the analogues. 

 QSAR rationales, with the same test-set used earlier for the analysis of 

PPARγ binding activity, have also been obtained for other reported activity 

profile pertaining to hPPARα and hPPARγ transactivation. A descriptor pool 

of 39 and 67 relevant descriptors for hPPARα and hPPARγ transactivation, 

respectively, were subjected to CP-MLR analysis. CP-MLR resulted a total 

number of 08 models in two parameters sharing 9 descriptors for 

hPPARα activity. For the hPPARγ activity 15 three parameters models 

sharing 18 descriptors were obtained. The shared descriptors along with their 

physical meaning, average regression coefficient and total incidences for both 

the analysis have been given in Table 4.3. The selected models emerged 

through CP-MLR are mentioned below.  

pEC50(hPPARα)= – 1.686(0.388)IC1 – 1.933(0.396)T(N..N) + 7.965  

n = 10, r = 0.945, s = 0.355, F = 29.412, q
2

LOO = 0.837,  

q
2

L3O = 0.847, r
2

Test= 0.610                                                                            (4.8) 

pEC50(hPPARα)= – 2.013(0.469)MAXDP – 2.690(0.426)IC1 + 8.450  

n = 10, r = 0.933, s = 0.391, F = 23.596, q
2

LOO = 0.740, 

q
2

L3O = 0.707, r
2

Test= 0.749                                                                         (4.9) 

pEC50(hPPARα)= – 2.340(0.422)AMW – 1.874(0.517)MAXDP + 7.881  

n = 10, r = 0.916, s = 0.435, F = 18.364, q
2

LOO = 0.643,  

q
2

L3O = 0.571, r
2

Test= 0.765                                                                      (4.10)  

pEC50(hPPARα)= –1.976(0.518)T(N..N) –1.546(0.540)MATS7m +7.995  

n = 10, r = 0.905, s = 0.462, F = 15.876, q
2

LOO = 0.724,  

q
2

L3O = 0.700, r
2

Test= 0.617     (4.11)  

Newly appeared descriptors IC1 and T(N..N) are topological class 

descriptors whereas descriptor MATS7m belong to 2D-autocorrelations (2D-

AUTO) class. The 2D-AUTO descriptors, ATSke, GATSke and MATSke 

have their origin in autocorrelation of topological structure of Broto-Moreau, 



206 

 

of Moran and of Geary, respectively. The computation of these descriptors 

involves the summation of different autocorrelation functions corresponding to 

the different fragment lengths and lead to different autocorrelation vectors 

corresponding to the lengths of the structural fragments. Also a weighting 

component in terms of a physicochemical property has been embedded in 

these descriptors. As a result, these descriptors address the topology of the 

structure or parts thereof in association with a selected physicochemical 

property. In these descriptors’ nomenclature, the penultimate character, a 

number, indicates the number of consecutively connected edges considered in 

its computation and is called as the autocorrelation vector of lag k 

(corresponding to the number of edges in the unit fragment). The very last 

character of the descriptor’s nomenclature indicates the physicochemical 

property considered in the weighting component – m for atomic mass, e for 

atomic Sanderson electronegativity and p for atomic polarizability - for its 

computation. 

 All the descriptors, participated in Eqs. (4.8) to (4.11), have shown 

negative correlation to activity as evinced from the signs of the correlation 

coefficients thus lower values of information content index of 1
st
 order 

neighborhood symmetry (descriptor IC1), sum of topological distances 

between N..N (descriptor T(N..N)), maximal electrotopological positive 

variation (descriptor MAXDP), average molecular weight (descriptor AMW) 

and Moran autocorrelation of lag-7/ weighted by atomic masses (descriptor 

MATS7m) would be beneficiary to the hPPARα activity. 

 The derived statistical parameters models have revealed that these 

models are statistically significant. The values greater than 0.5 of indices 

q
2

LOO and q
2

L3O have accounted the internal robustness of models and the r
2

Test 

values greater than 0.5 are accountable for external validation. These models 

are able to estimate up to 89.36 percent of variance in observed activity of the 

compounds. These models were, therefore, used to calculate the activity 

profiles of all the compounds and are included in Table 4.6 for the sake of 

comparison with observed ones. A close agreement between them has been 

observed. 
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 Considering the number of observation in the data set for the hPPARγ 

transactivation profile, models with up to three descriptors were explored. 

Following are the selected three-descriptor models, obtained from CP-MLR, 

for the hPPARγ transactivation. 

Table 4.6: Observed and calculated transactivation activities of 

tetrahydroquinoline analogues. 

Cpd. 

Transactivation pEC50(M)a 

hPPARα hPPARγ 

Obs.b 

Calculated 

Obs.b 

Calculated 

Eq. 

(4.8) 

Eq. 

(4.9) 

Eq. 

(4.10) 

Eq. 

(4.11) 

Eq. 

(4.12) 

Eq. 

(4.13) 

Eq. 

(4.14) 

Eq. 

(4.15) 

1 5.00 5.01 5.58 5.10 5.04 8.40 8.31 8.62 8.14 8.48 

2 6.38 6.71 6.44 5.98 6.91 7.43 7.34 7.57 7.71 7.23 

3 -c 7.81 6.19 5.28 7.76 6.82 7.35 6.75 6.87 7.17 

4 -c 6.73 6.19 6.33 7.32 6.71 6.56 6.44 6.55 6.74 

5 6.72 7.19 6.71 6.74 7.16 7.32 7.03 7.51 7.70 7.02 

6 7.52 7.60 7.35 6.86 7.01 7.72 7.44 7.58 7.76 7.32 

7d 7.54 7.60 7.35 6.86 7.01 7.85 7.44 7.58 7.76 7.32 

8d 7.92 6.91 7.11 7.39 6.70 7.96 7.45 7.49 7.69 7.54 

9 7.54 6.91 7.11 7.39 6.70 7.85 7.45 7.49 7.69 7.54 

10 6.71 6.91 7.11 7.39 6.70 7.19 7.45 7.49 7.69 7.54 

11d 6.94 6.91 7.11 7.39 6.70 8.11 7.45 7.49 7.69 7.54 

12 7.14 6.87 7.03 7.41 7.32 7.89 7.90 7.52 7.69 7.74 

13 7.47 7.30 7.67 7.20 7.47 8.15 8.34 7.85 7.66 8.52 

14d 8.05 7.04 7.28 7.51 7.63 8.12 7.98 7.85 7.68 7.88 

15 -c 6.51 6.48 6.93 6.54 -c 7.10 7.23 7.59 7.43 

16 6.00 5.92 5.44 6.14 6.08 6.90 7.23 6.87 6.69 6.71 

17 5.00 5.07 5.04 5.26 5.09 7.85 7.72 8.19 7.96 7.90 

18 -c 4.84 5.34 6.19 5.22 5.00 5.09 5.34 5.11 5.33 
a
On molar basis, determined in a transient transfection assay using pGAL4hPPARα and 

pGAL4hPPARγ; 
b
Taken from ref. [767, 768]; 

c
Inactive compound, not part of data set and 

d
Compound included in test set.  

pEC50(hPPARγ) = 2.386(0.312)MATS5v + 1.369(0.237)MATS8e  

+ 0.827(0.241)nCt + 4.807  

n = 13, r = 0.950, s = 0.311, F = 28.279, q
2

LOO = 0.640,  

q
2

L3O = 0.713, r
2

Test= 0.545                     (4.12) 

 

pEC50(hPPARγ) = 1.089(0.346)HNar + 1.129(0.232)MATS8e 

+ 1.363(0.213)C-008 + 5.156  
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n = 13, r = 0.950, s = 0.313, F = 27.929, q
2

LOO = 0.736, 

q
2

L3O = 0.760, r
2

Test= 0.613     (4.13) 

 

pEC50(hPPARγ) = – 0.710(0.242)Me + 1.090(0.240)MATS8e 

 + 1.595(0.215)C-008 + 5.808  

n = 13, r = 0.946, s = 0.325, F = 25.748, q
2

LOO = 0.785, 

q
2

L3O = 0.701, r
2

Test= 0.766     (4.14) 

 

pEC50(hPPARγ)= 2.482(0.329)MATS5v + 1.390(0.308)GATS6e 

– 0.983(0.231)C-006 + 5.707  

n = 13, r = 0.946, s = 0.325, F = 25.723, q
2

LOO = 0.709, 

q
2

L3O = 0.808, r
2

Test= 0.560     (4.15) 

 In all above equations (4.12) to (4.15) the F-values remained 

significant at 99% level. The values, greater than 0.5, obtained for the indices 

q
2

LOO, q
2

L3O, and r
2

Test ascertained the internal   robustness and external 

validation of the models. These models are capable to explain up to 90.40 

percent of variance in observed activity of the compounds. The derived 

statistical parameters are in tune to statistical significance. The activity profile 

of all the compounds calculated using these equations is in the close 

agreement to the observed ones and the same are included in Table 4.6.  

 2D-autocorrelations class descriptors MATS5v (Moran autocorrelation 

of lag-5/ weighted by atomic van der Waals  volumes), MATS8e (Moran 

autocorrelation of lag-8/ weighted by atomic Sanderson electronegativities) 

and GATS6e (Geary autocorrelation of lag-6/ weighted by atomic Sanderson 

electronegativities) added positively to the inhibitory activity suggesting that a 

higher values of descriptors MATS5v, MATS8e and GATS6e would be 

helpful to augment the activity. Constitutional class descriptors Me (mean 

atomic Sanderson electronegativity scaled on Carbon atom) favors low value 

of mean atomic Sanderson electronegativity for elevated activity.  

 Descriptor HNar, corresponds to Narumi harmonic index, is a 

topological class descriptor. The positive contribution of descriptor HNar 

suggested that a higher value of it would be supportive to the activity. The 
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other participated descriptors are nCt (from the functional group class), and C-

006 and C-008 (from the atom-centered fragments). Number of total tertiary 

C(sp3) (descriptor nCt) and CHR2X type atom centered fragment (descriptor 

C-008) correlated positively to the activity suggested that a higher value of 

these will augment the activity. On the other hand negative correlation of 

descriptor C-006 advocated that CH2RX type structural fragments would be 

detrimental to the activity.  

2.1.1.2. APPLICABILITY DOMAIN (AD) 

 To analyze the applicability domain (AD) a Williams plot of the model 

based on the whole data set (Table 4.7) has been constructed that is shown in 

Figure 4.3. 

     

     

Figure 4.3: Williams plot for the training-set and test- set for binding affinity 

of PPARγ for the compounds in Table 4.1. The horizontal dotted line refers to 

the residual limit (±3×standard deviation) and the vertical dotted line 

represents threshold leverage h* (= 0.6). 

-2

-1

0

1

2

0 0.2 0.4 0.6 0.8 1

C
a
lc

. 
p

K
i
(E

q
. 
4

.4
a
)

Observed pKi

Training set; Test set

-2

-1

0

1

2

0 0.2 0.4 0.6 0.8 1

C
a
lc

. 
p

K
i
(E

q
. 
4

.5
a
)

Observed  pKi

Training set; Test set

-2

-1

0

1

2

0 0.2 0.4 0.6 0.8 1

C
a

lc
. 
p

K
i
(E

q
. 
4

.6
a

)

Observed pKi

Training set; Test set

-2

-1

0

1

2

0 0.2 0.4 0.6 0.8 1

C
a

lc
. 
p

K
i
(E

q
. 
4

.7
a

)

Observed pKi

Training set; Test set



210 

 

Table 4.7: Models derived for the whole data set (n = 15) for the PPARγ 

binding affinity in descriptors identified through CP-MLR.  

Model r s F q
2

LOO Eq. 

pKi= -1.523(0.412)MAXDP 

+2.483(0.378)nHDon + 6.229 
0.930 0.457 38.897 0.808 (4.4a) 

pKi= 0.915(0.296)nROR  

+ 3.123(0.401)nHDon + 4.780 
0.916 0.499 31.601 0.739 (4.5a) 

pKi= 1.962(0.579)X2A  

– 2.374(0.386)O-060 + 6.938 
0.904 0.534 26.829 0.745 (4.6a) 

pKi= 1.668(0.441)AMW  

– 2.457(0.363)O-060 + 6.894 
0.914 0.505 30.802 0.727 (4.7a) 

 The analysis revealed that none of the compound has been identified as 

an obvious ‘outlier’ for the PPARγ binding activity if the limit of normal 

values for the Y outliers (response outliers) was set as 3×(standard deviation) 

units and compounds 2 and 17 appeared as chemically influential compounds. 

Furthermore, the suggested model matches the high quality parameters with 

good fitting power and the capability of assessing external data and all of the 

compounds were within the applicability domain of the proposed model and 

were evaluated correctly. 

2.1.2. CONCLUSIONS 

This study has provided a rational approach for the development of 

tetrahydroquinoline derivatives as PPARα/γ agonists. The descriptors 

identified in CP-MLR analysis for the PPARγ binding activity have 

highlighted the role of average molecular weight (AMW), maximal 

electrotopological positive variation (MAXDP), average connectivity index 

i.e. chi-2 (X2A) to explain the binding actions in addition to presence of donor 

atoms for H-bonds with N and O (nHDon), aliphatic ethers (nROR) and 

absence of Al-O-Ar/Ar-O-Ar/R..O..R/R-O-C=X type fragments in a molecular 

structure (O-060) have also shown prevalence to optimize the PPARγ binding 

activity of titled compounds. PLS analysis has further confirmed the 

dominance of the CP‐MLR identified descriptors and applicability domain 

analysis revealed that the suggested model for PPARγ binding activity 

matches the high quality parameters with good fitting power and the capability 
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of assessing external data and all of the compounds was within the 

applicability domain of the proposed model and were evaluated correctly.  

Derived statistical significant models for hPPARα transactivation 

activity revealed that lower values of information content index of 1
st
 order 

neighborhood symmetry (descriptor IC1), sum of topological distances 

between N..N (descriptor T(N..N)), maximal electrotopological positive 

variation (descriptor MAXDP), average molecular weight (descriptor AMW) 

and Moran autocorrelation of lag-7/ weighted by atomic masses (descriptor 

MATS7m) would be beneficiary to the hPPARα activity. Role of atomic van 

der Waals volumes and electronegativities to explain the hPPARγ 

transactivation activity is evinced through participation of descriptors 

MATS5v, MATS8e, GATS6e and Me. Additionally a higher value of Narumi 

harmonic index (HNar), number of total tertiary C(sp3) (descriptor nCt), 

presence of CHR2X type atom centered fragment (descriptor C-008) and 

absence of CH2RX type structural fragments (descriptor C-006) will augment 

the hPPARγ transactivation activity.  

2.2. BENZYLPYRAZOLE ACYLSULFONAMIDES AS PPARγ  

 AGONISTS 

 In present scenario development of new and safer antidiabetic agents 

which may lower hemoglobin A1c (HbA1c) levels and improve the lipid profile 

of patients simultaneously is ardently needed [770-773].PPARγ is expressed 

predominantly in adipose tissue, in a lesser extent in the intestine, mammary 

gland, endothelium, liver, skeletal muscle and in other tissues throughout the 

body. PPARγ plays a pivotal role in many physiological processes such as 

adipogenesis, glucose and lipid homeostasis, insulin sensitivity, inhibition of 

inflammatory responses, cell proliferation and promotion of terminal 

differentiation [752, 774, 775]. Introduction of troglitazone, pioglitazone 

hydrochloride and rosiglitazone maleate (the representatives of 

thiazolidinediones (TZDs)) as insulin sensitizers and the fact that TZDs are 

high-affinity PPARγ ligands [757] has opened new avenues for extensive 
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research in the area of antidiabetic drug discovery and development [754, 755, 

776]. 

 Efforts were made to indentify novel classes of PPAR ligands, based on 

several approaches such as PPARα/γ dual agonists, PPARγ/δ dual agonists 

and PPARα/γ/δ pan agonists, as second-generation insulin sensitizers [776]. 

Numerous reported non-TZD PPARγ ligands belonging to different chemical 

classes are mostly carboxylic acids. A novel class of benzylpyrazole 

acylsulfonamides as non-thiazolidinedione (TZD), non-carboxylic-acid-based 

selective PPARγ agonists has been reported by Rikimaru et al. [777].  

 The reported twentyeight benzylpyrazole acylsulfonamides are considered 

as the data set for this study [777]. The general structure of these derivatives is 

given in Figure 4.4.  

 

ClX

N
N

R2

R1  

Figure 4.4: General structure of the benzylpyrazole acylsulfonamides.  

 The structural variations of these analogues are mentioned in Table 

4.8. These derivatives were evaluated for their transactivation activity against 

human PPARγ stably expressed in Chinese hamster ovary (CHO) cells. 

Transactivation activities were assessed by a luciferase reporter gene assay 

using (R)-5-(3-{4-[(2-Furan-2-yl-5-methyl-1,3-oxazol-4-yl)methoxy]-3-

methoxyphenyl}propyl)-1,3-oxazolidine-2,4-dione as the reference 

PPARγ agonist [778] and were reported as EC50 and the same are also 

presented in Table 4.8 as pEC50 on molar basis. For modeling purpose the data 

set has been sub-divided into training set (for model development) and test set 

(for external prediction or validation). The selection of test set compounds was 

made using an in-house written randomization program. The test and training 

set compounds are also mentioned in Table 4.8. 
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Table 4.8: Structural variations and reported PPARγ transactivation activities 

of benzylpyrazole acylsulfonamides. 

Cpd.  X R1 R2 pEC50(M)
a
 

1 Cl  Isopropoxy 

N
H

S
Me

O
O O

 

6.35 

2
b
 Cl Isopropoxy 

N
H

S
(CH2)2Me

O
O O

 

6.80 

3 Cl Isopropoxy 

N
H

S
(CH2)4Me

O
O O

 

7.80 

4 Cl Isopropoxy 

N
H

S
(CH2)3Me

O
O O

 

7.40 

5
b
 Cl Isopropoxy 

N
H

S
(CH2)5Me

O
O O

 

7.68 

6 Cl Isopropoxy 

N
H

S

O
O O Me

Me 

7.77 

7 Cl Isopropoxy 

N
H

S

O
O O

 

6.82 

8 Cl Isopropoxy 

N
H

S

O
O O

 

6.96 

9 Cl Isopropoxy 

N
H

S

O
O O

 

6.59 

10 Cl Butoxy  

N
H

S
(CH2)4Me

O
O O

 

8.12 

11
b
 Cl MeO(CH2)2O 

N
H

S
(CH2)4Me

O
O O

 

7.51 

12
b
 Cl Benzyloxy  

N
H

S
(CH2)4Me

O
O O

 

7.85 
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13 Cl 2-Pyridylmethoxy 

N
H

S
(CH2)4Me

O
O O

 

6.92 

14 Cl Isopropyl  

N
H

S
(CH2)4Me

O
O O

 

7.89 

15
b
 Cl phenyl 

N
H

S
(CH2)4Me

O
O O

 

7.96 

16 Cl Butoxy 

N
H

S
(CH2)4Me

O
O O

 

-
c
 

17 Cl Butoxy 

N
H

S
(CH2)4Me

O
O O

 

-
d
 

18
b
 Cl Butoxy 

N
H

S
(CH2)4Me

O
O O

 

7.17 

19 Cl Butoxy  

N
H

S
(CH2)4Me

O
O O

 

7.54 

20 CF3 Isopropoxy 

N
H

S
(CH2)4Me

O
O O

 

8.00 

21
b
 CF3 Isopropyl  

N
H

S
(CH2)4Me

O
O O

 

8.08 

22 CF3 Cyclopropyl 

N
H

S
(CH2)4Me

O
O O

 

7.89 

23 Cl Isopropoxy 

N
H

S
(CH2)4Me

O
O O

 

7.70 

24 CF3 Isopropoxy 

N
H

S
(CH2)4Me

O
O O

 

8.03 

25 CF3 Isopropoxy  

N
H

S

O
O O Me

Me 

8.08 
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26 CF3 MeO(CH2)2O 

N
H

S

O
O O Me

Me 

8.05 

27 Cl Isopropyl  

N
H

S
(CH2)4Me

O
O O

 

8.09 

28 CF3 Cyclopropyl 

N
H

S
(CH2)4Me

O
O O

 

7.92 

a
EC50 (the effective concentration for 50% response of a given compound’s intrinsic 

maximum response) on molar basis, taken from reference [777]; 
b
Compound included in test 

set; 
c
Inactive compound, not part of data set; 

d
Compound with uncertain activity, not part of 

data set. 

 

2.2.1. RESULTS AND DISCUSSION 

2.2.1.1. QSAR RESULTS 

A total number of 484 descriptors, belonging to 0D- to 2D- modules of 

DRAGON software, have been computed to obtain most appropriate models 

describing the biological activity. Prior to model development procedure, all 

those descriptors that are inter-correlated beyond 0.90 and showing a 

correlation of less than 0.1 with the biological endpoints (descriptor versus 

activity, r < 0.1) were excluded. This procedure has reduced the total 

descriptors from 484 to 107 as relevant ones to explain the biological actions 

of titled compounds. For the purpose of modeling study, 7 compounds have 

been included in the test set for the validation of the models derived from 19 

training set compounds. All the 107 significant descriptors have been 

subjected to CP-MLR analysis with default “filters” set in it. Statistical models 

in two descriptors have been derived to achieve the best relationship 

correlating PPARγ transactivation activity. A total number of seven models in 

two descriptors, having r
2

Test> 0.5, were obtained through CP-MLR. The 

selected models in two descriptors are given below. 

pEC50 = 6.337 + 1.221(0.229)BELm5 + 1.017(0.225)JGI4   

n = 19, r = 0.871, s = 0.291, F = 25.371, Q
2

LOO = 0.658, Q
2
L5O = 0.663 

r
2

Test = 0.549, FIT = 2.206, LOF = 0.114, AIC = 0.116           (4.16) 

pEC50 = 6.319 + 1.342(0.254)BELm5 + 0.810(0.218)JGI2   
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n = 19, r = 0.841, s = 0.321, F = 19.337, Q
2

LOO = 0.594, Q
2
L5O = 0.594 

r
2

Test = 0.503, FIT = 1.681, LOF = 0.139, AIC = 0.142           (4.17) 

pEC50 = 6.387 + 1.080(0.265)BELm5 + 1.055(0.300)GGI4   

n = 19, r = 0.831, s = 0.330, F = 17.991, Q
2

LOO = 0.597, Q
2
L5O = 0.583 

r
2

Test = 0.680, FIT = 1.564, LOF = 0.147, AIC = 0.149           (4.18) 

pEC50 = 6.405 + 1.189(0.276)BELm5 + 0.836(0.274)GGI2   

n = 19, r = 0.809, s = 0.349, F = 15.186, Q
2

LOO = 0.538, Q
2
L5O = 0.501 

r
2

Test = 0.597, FIT = 1.320, LOF = 0.165, AIC = 0.167           (4.19) 

Most of the descriptors GGI2, GGI4, JGI2 and JGI4 participated in 

above models are from the GALVEZ class and the remained one BELm5 is 

the modified Burden eigenvalue (BCUT class descriptor). All the descriptors 

have shown positive influence on the activity as evident from the signs of 

regression coefficients. Thus a higher value of Galvez descriptors GGI2 (2
nd

 

order topological charge index), GGI4 (4
th

 order topological charge index), 

JGI2 (2
nd

 order mean topological charge index) and JGI4 (4
th

 order mean 

topological charge index) in addition to a higher value of the lowest 

eigenvalue n.5 of Burden matrix/weighted by atomic masses (descriptor 

BELm5) would be beneficiary to the activity.  

 The two descriptor models could estimate nearly 76% in observed 

activity of the compounds. Considering the number of observation in the 

dataset, models with up to three descriptors were explored. It has resulted in 

21 three-parameter models with test set r
2
> 0.50. These models (with 107 

descriptors) were identified in CP-MLR by successively incrementing the 

filter-3 with increasing number of descriptors (per equation). For this, the 

optimum r-bar value of the preceding level model (= 0.854) has been used as 

the new threshold of filter-3 for the next generation. 

 These models have shared 26 descriptors among them. All these 26 

descriptors along with their brief meaning, average regression coefficients, 

and total incidence are listed in Table 4.9, which will serve as a measure of 

their estimate across these models.  
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Table 4.9: Identified descriptors
a
 along with their class, average regression 

coefficient and incidence
b
, in modeling the PPARγ transactivation activities of 

benzylpyrazole acylsulfonamides.  

Descriptor class, average regression coefficient  and (incidence) 

Topological descriptors 

(TOPO) 

HNar, -0.692(1); MAXDP, 0.941(2); BAC, 

1.180(2); Lop, 1.714(10); Uindex, 1.527(1); 

BIC3, 0.678(1); T(N..O), -0.778(3) 

Modified Burden Eigen 

values (BCUT) 

BELm5, 1.069(6); BEHv2, 0.986(6); BELv8, 

1.368(1); BEHm3, 0.659(1) 

Galvez Topological  charge 

indices (GLVZ) 

GGI2, 0.621(1); GGI4, 0.885(4); GGI7, 

0.659(1); JGI2, 0.517(1); JGI4, 0.825(4); JGT, 

0.583(1) 

2D autocorrelations 

(2D-AUTO): 

MATS8m, -0.765(2); MATS4v, 0.890(6); 

MATS3e, 1.538(2); MATS3p, -0.690(1); 

MATS5p, -1.079(1); GATS5p, 0.603(2) 

Empirical descriptors 

(EMP) 

Hy, -7.354(1) 

Functional groups (FUNC) nCrH2, -0.856(1) 

Properties (PROP) MLOGP, 0.523(1) 

aThe descriptors are identified from the three parameter models for PPARγ binding activity 

transactivation activity emerged from CP-MLR protocol with filter-1 as 0.3, filter-2 as 2.0, 

filter-3 as 0.854 and filter-4 as 0.3 ≤ q
2
 ≤1.0 with a training set of 19 compounds. 

b
The 

average regression coefficient of the descriptor corresponding to all models and the total 

number of its incidence. The arithmetic sign of the coefficient represents the actual sign of the 

regression coefficient in the models. TOPO: HNar, Narumi harmonic index; MAXDP, 

maximal electrotopological positive variation; BAC, Balaban centric index; Lop, Lopping 

centric index; Uindex, Balaban U index; BIC3, bond information content of 3rd order 

neighborhood symmetry; T(N..O), sum of topological distances between N..O; BCUT: 

BEHm3, highest eigenvalue n.3 of Burden matrix/weighted by atomic masses; BELm5, 

lowest eigenvalue n.5 of Burden matrix/weighted by atomic masses; BEHv2, highest 

eigenvalue n.2 of Burden matrix/weighted by van der Waals volumes; BELv8, lowest 

eigenvalue n.8 of Burden matrix/weighted by van der Waals  volumes; GLVZ: GGI2, 

topological charge index of order 2; GGI4, topological charge index of order 4; GGI7, 

topological charge index of order 7; JGI2, mean topological charge index of order 2; JGI4, 

mean topological charge index of order 4; JGT, global topological charge index; 2D-AUTO: 

MATS8m, Moran autocorrelation of lag-8/ weighted by atomic masses; MATS4v, Moran 

autocorrelation of lag-4/ weighted by atomic van der Waals  volumes; MATS3e, Moran 

autocorrelation of lag-3/ weighted by atomic Sanderson electronegativities; MATS3p, Moran 

autocorrelation of lag-3/weighted by atomic polarizabilities; MATS5p, Moran autocorrelation 

of lag-5/ weighted by atomic polarizabilities; GATS5p, Geary autocorrelation of lag-5/ 
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weighted by atomic polarizabilities; FUNC: nCrH2, number of ring secondary C(sp3); EMP: 

Hy, hydrophilic factor; PROP: MLOGP, Moriguchi octanol-water partition coefficient (logP). 

 Following are the selected three-descriptor models for the PPARγ 

transactivation activities of benzylpyrazole acylsulfonamides emerged through 

CP-MLR. 

pEC50 = 5.456 + 1.120(0.297)MAXDP + 1.679(0.208)Lop  

+ 0.807(0.169)JGI4   

n = 19, r = 0.936, s = 0.215, F = 35.559, Q
2

LOO = 0.718, Q
2
L5O = 0.606 

r
2

Test = 0.523, FIT = 3.809, LOF = 0.078, AIC = 0.071           (4.20) 

pEC50 = 6.380 + 1.267(0.185)Lop – 0.583(0.222)T(N..O)  

+ 1.022(0.208)GGI4   

n = 19, r = 0.927, s = 0.229, F = 30.866, Q
2

LOO = 0.760, Q
2
L5O = 0.733 

r
2

Test = 0.512, FIT = 3.307, LOF = 0.088, AIC = 0.080           (4.21) 

pEC50 = 5.986 + 1.243(0.193)Lop + 0.894(0.228)GGI4  

+ 0.523(0.235)MLOGP   

n = 19, r = 0.920, s = 0.240, F = 27.678, Q
2

LOO = 0.704, Q
2
L5O = 0.631 

r
2

Test = 0.532, FIT = 2.965, LOF = 0.097, AIC = 0.088           (4.22) 

pEC50 = 5.683 + 0.761(0.349)MAXDP + 1.560(0.241)Lop  

+ 0.892(0.230)GGI4   

n = 19, r = 0.919, s = 0.241, F = 27.382, Q
2

LOO = 0.685, Q
2
L5O = 0.773 

r
2

Test = 0.556, FIT = 2.933, LOF = 0.098, AIC = 0.089           (4.23) 

 The newly appeared descriptors in above models, MAXDP, 

Lop and T(N..O), are topological class descriptors whereas MLOGP belongs 

to properties class. Descriptors MAXDP, Lop and MLOGP have shown 

positive and descriptor T(N..O), showed negative correlation to the activity. 

The signs of regression coefficients advocated that higher values of maximal 

electrotopological positive variation (descriptor MAXDP), Lopping centric 

index (descriptor Lop) and Moriguchi octanol-water partition coefficient i.e. 

logP (descriptor MLOGP) would be incremental to the activity. On the other 
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hand a higher value of sum of topological distances between N..O would be 

deleterious to the activity.  

 These models have accounted for nearly 88% variance in the observed   

activities. In the randomization study (100 simulations per model), none of the 

identified models has shown any chance correlation. The values greater than 

0.5 of Q
2 

index is in accordance to a reasonable robust QSAR model. The 

pEC50 values of training set compounds calculated using Eqs. (4.20) to (4.23) 

and predicted from LOO procedure have been included in Table 4.10. The 

models (4.20) to (4.23) are validated with an external test set of 7 compounds 

listed in Table 4.8. The predictions of the test set compounds based on 

external validation are found to be satisfactory as reflected in the test set r
2
 

(r
2

Test) values and the same is reported in Table 4.10. The goodness of fit 

between observed and calculated activities is shown in Figure 4.5. 

Table 4.10: Observed and modeled PPARγ transactivation activity of 

benzylpyrazole acylsulfonamides.  

 

S. 

No. 

pEC50(M)
a
 

 

Obsdb 

Eq. (4.20) Eq. (4.21) Eq. (4.22) Eq. (4.23) PLS 

Calc Pred
c
 Calc Pred

c
 Calc Pred

c
 Calc Pred

c
 Calc Pred

c
 

1 6.35 6.48 7.08 6.89 7.09 6.61 6.86 6.46 7.05 6.57 6.64 

2d 6.80 6.91 -d 7.09 -d 6.87 -d 6.84 -d 6.85 -d 

3 7.80 7.70 7.69 7.57 7.53 7.54 7.50 7.65 7.62 7.58 7.55 

4 7.40 7.57 7.58 7.48 7.49 7.38 7.37 7.46 7.47 7.24 7.22 

5d 7.68 7.81 -d 7.65 -d 7.69 -d 7.81 -d 7.84 -d 

6 7.77 7.93 7.95 7.75 7.75 7.69 7.68 7.78 7.78 7.62 7.61 

7 6.82 6.86 6.89 6.67 6.60 6.72 6.67 6.81 6.80 6.87 6.88 

8 6.96 6.63 6.49 6.67 6.54 6.73 6.63 6.65 6.52 6.69 6.60 

9 6.59 6.64 6.67 6.73 6.80 6.77 6.85 6.72 6.78 6.66 6.68 

10 8.12 7.79 7.68 7.66 7.58 7.70 7.61 7.80 7.69 7.73 7.62 

11
d
 7.51 7.76 -

d
 7.40 -

d
 7.38 -

d
 7.78 -

d
 7.46 -

d
 

12d 7.85 7.43 -d 7.46 -d 7.61 -d 7.59 -d 7.57 -d 

13 6.92 7.42 7.53 7.00 7.11 7.29 7.35 7.58 7.68 7.33 7.38 

14 7.89 8.12 8.17 8.00 8.01 7.92 7.92 7.89 7.89 7.95 7.96 

15d 7.96 7.62 -d 7.64 -d 7.71 -d 7.65 -d 7.68 -d 

16e -e -e -e -e -e -e -e -e -e -e -e 

17
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

18
d
 7.17 7.54 -

d
 7.56 -

d
 7.76 -

d
 7.69 -

d
 7.74 -

d
 

19 7.54 7.57 7.59 7.64 7.68 7.99 8.25 7.80 7.86 7.83 7.97 

20 8.00 7.95 7.94 7.98 7.98 8.01 8.01 8.01 8.01 8.03 8.04 
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21d 8.08 8.37 -d 8.42 -d 8.39 -d 8.25 -d 8.38 -d 

22 7.89 7.93 7.94 8.04 8.07 8.05 8.09 7.91 7.91 7.87 7.87 

23 7.70 7.57 7.55 7.57 7.55 7.50 7.47 7.56 7.53 7.63 7.63 

24 8.03 7.81 7.80 7.98 7.98 7.97 7.96 7.92 7.90 8.09 8.09 

25 8.08 8.00 7.99 8.17 8.20 8.12 8.13 8.05 8.04 8.17 8.21 

26 8.05 8.08 8.08 8.01 7.99 7.97 7.87 8.20 8.24 8.05 8.05 

27 8.02 7.99 7.98 8.00 8.00 7.88 7.87 7.80 7.78 8.02 8.02 

28 7.92 7.80 7.78 8.04 8.06 8.02 8.03 7.81 7.80 7.92 7.92 
a
On molar basis; 

b
Taken from ref. [777]; 

c
Leave-one-out (LOO) procedure; 

d
Compound included in test 

set; eCompound with uncertain activity or inactive, not part of data set.  

    

 

    

Figure 4.5: plot of observed and calculated pEC50 values of training- and test-

set compounds for PPARγ transactivation.   
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A partial least square (PLS) analysis has been carried out on these 26 

CP-MLR identified descriptors (Table 4.8) to facilitate the development of a 

“single window” structure–activity model. For the purpose of PLS, the 

descriptors have been auto-scaled (zero mean and unit SD) to give each one of 

them equal weight in the analysis. In the PLS cross-validation, two 

components are found to be the optimum for these 10 descriptors and they 

explained 88.36% variance in the activity (r
2
 = 0.940, Q

2
LOO = 0.819, s = 

0.202, F = 60.955, r
2

Test = 0.517). The MLR-like PLS coefficients of these 26 

descriptors are given in Table 4.11. 

Table 4.11: PLS and MLR-like PLS models from the descriptors of three 

parameter CP-MLR models for PPARγ transactivation activities.  

A: PLS equation 

PLS components PLS coefficient (s.e.)
a
 

Component-1 -0.171(0.016) 

Component-2 -0.078(0.021) 

Constant 7.571 

B: MLR-like PLS equation 

S. 

No. 
Descriptor 

MLR-

like 

coef.b 

 (f.c.)
c
 Order  

S. 

No. 
Descriptor 

MLR-

like 

coef.b 

 (f.c.)
c
 Order  

1 HNar -0.149 -0.043 10 14 GGI7 0.116 0.037 12 

2 MAXDP -0.026 -0.006 24 15 JGI2 0.053 0.020 20 

3 BAC 0.156 0.048 9 16 JGI4 0.100 0.033 14 

4 Lop 0.287 0.092 1 17 JGT -0.018 -0.005 25 

5 Uindex 0.194 0.064 5 18 MATS8m -0.204 -0.063 6 

6 BIC3 0.111 0.026 18 19 MATS4v 0.216 0.065 4 

7 T(N..O) -0.151 -0.040 11 20 MATS3e 0.310 0.067 3 

8 BEHm3 0.061 0.019 21 21 MATS3p -0.022 -0.006 23 

9 BELm5 0.272 0.088 2 22 MATS5p -0.006 -0.002 26 

10 BEHv2 -0.111 -0.033 13 23 GATS5p 0.094 0.029 17 

11 BELv8 0.210 0.061 7 24 nCrH2 -0.117 -0.032 15 

12 GGI2 0.068 0.022 19 25 Hy -0.442 -0.016 22 

13 GGI4 0.110 0.031 16 26 MLOGP 0.194 0.053 8 

Constant            6.558 

C: PLS regression statistics Values  

n 19 

r 0.940 

s 0.202 

F 60.955 

FIT 5.300 

LOF 0.055 

AIC 0.056 

Q
2

LOO 0.819 
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Q
2

L5O 0.797 

r
2

Test 0.517 
aRegression coefficient of PLS factor and its standard error. bCoefficients of MLR-like PLS equation in 

terms of descriptors for their original values;
c
f.c. is fraction contribution of regression coefficient, 

computed from the normalized regression coefficients obtained from the autoscaled (zero mean and unit 

s.d.) data. 

For the sake of comparison, the plot showing goodness of fit between 

observed and calculated activities (through PLS analysis) for the training and 

test set compounds is also given in Figure 4.5. Figure 4.6 shows a plot of the 

fraction contribution of normalized regression coefficients of these descriptors 

to the activity.  

 

 

Figure 4.6: Plot of fraction contribution of MLR-like PLS coefficients 

(normalized) against 26 CP-MLR identified descriptors (Table 4.11) 

associated with PPARγ transactivation activity of benzylpyrazole 

acylsulfonamides.  

 
The PLS analysis has suggested Lop as the most determining 

descriptor for modeling the activity of the compounds (descriptor S. No. 4 in 

Table 4.11; Figure 4.6). The other nine significant descriptors in decreasing 

order of significance are BELm5, MATS3e, MATS4v, Uindex, MATS8m, 

BELv8, MLOGP, BAC and HNar. Descriptors Lop, BELm5 and MLOGP are 

part of Eqs. (4.16) to (4.23) and convey same inference in the PLS model as 

well.  
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It is inferred from the PLS analysis that a higher values of 2D 

autocorrelation descriptors MATS3e (Moran autocorrelation of lag-3/ 

weighted by atomic Sanderson electronegativities) and MATS4v (Moran 

autocorrelation of lag-4/ weighted by atomic van der Waals volumes), 

topological descriptors Uindex (Balaban U index) and BAC (Balaban centric 

index); and modified Burden eigenvalue class descriptor BELv8 (lowest 

eigenvalue n.8 of Burden matrix/weighted by van der Waals volumes) would 

be advantageous to the activity. Based on the similar grounds a lower value of 

Moran autocorrelation of lag-8/ weighted by atomic masses (descriptor 

MATS8m) and Narumi harmonic index (descriptor HNar) will be supportive 

to the activity. It is also observed that PLS model from the dataset devoid of 

CP-MLR identified 26 descriptors (Table 4.11) is inferior in explaining the 

activity of the analogues. 

2.2.1.2. APPLICABILITY DOMAIN (AD) 

 To analyze the applicability domain (AD) a Williams plot of the model 

based on the whole data set (Table 4.12) has been constructed that is shown in 

Figure 4.7.  

From the analysis it has appeared that none of the compounds were 

identified as an obvious outlier for the PPARγ transactivation activities if the 

limit of normal values for the Y outliers (response outliers) was set as 3 

(standard deviation) units. One compound listed in Table 4.8 at S. No. 1 found 

to have leverage (h) values greater than the threshold leverage (h*) suggesting 

it as chemically influential compound.  

For both the training-set and test-set, the suggested model matches the 

high quality parameters with good fitting power and the capability of assessing 

external data. Furthermore, all of the compounds were within the applicability 

domain of the proposed model and were evaluated correctly. 

Table 4.12: Models derived for the whole data set (n = 26) for the PPARγ 

transactivation activity in descriptors identified through CP-MLR.  

Model r s F Eq. 

pEC50 = 5.430 +1.259(0.267)MAXDP  0.905 0.237 33.591 (4.20a) 
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+1.583(0.197)Lop+0.795(0.140)JGI4 

pEC50 = 6.419 + 1.191(0.189)Lop  

–0.572(0.219)T(N..O)+1.029(0.185)GGI4   

0.893 0.251 29.140 (4.21a) 

pEC50 = 6.063 +1.135(0.190)Lop  

+0.922(0.199)GGI4+0.471(0.189)MLOGP 

0.891 0.254 28.302 (4.22a) 

pEC50 = 5.699 + 0.796(0.290)MAXDP  

+1.409(0.210)Lop+0.977(0.186)GGI4   

0.896 0.248 30.001 (4.23a) 

 

    

    

Figure 4.7: Williams plot for the training-set and test- set compounds for 

PPARγ transactivation activity. The horizontal dotted line refers to the residual 

limit (±3×standard deviation) and the vertical dotted line represents threshold 

leverage h* (= 0.46). 

2.2.2. CONCLUSIONS 

 The PPARγ transactivation activity of benzylpyrazole acylsulfonamide 

derivatives have been quantitatively analyzed in terms of 0D- to 2D-Dragon 

descriptors. This study has provided a rational approach for the development 

of titled derivatives as PPARγ agonists. The descriptors identified in CP-MLR 
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analysis for the PPARγ transactivation activity have highlighted the role of 

atomic properties (mass, electronegativity, van der Waals volumes and 

polarizability) in terms of weighted 2D autocorrelations and BCUT descriptors 

and electronic content in terms of Galvez charge indices and maximal 

electrotopological positive variation (MAXDP). Additionally, Balaban’s U 

and centric indices (Uindex and BAC, respectively), Lopping centric index 

(Lop), topological distance between N..O and hydrophobicity accounting 

parameter MLOGP have also shown prevalence to optimize the PPARγ 

transactivation of titled compounds. PLS analysis has further confirmed the 

dominance of the CP‐MLR identified descriptors and applicability domain 

analysis revealed that the suggested model matches the high quality 

parameters with good fitting power and the capability of assessing external 

data and all of the compounds was within the applicability domain of the 

proposed model and were evaluated correctly.  

2.3. PYRIDYLOXYBENZENE-ACYLSULFONAMIDES AS PPARγ 

 AGONISTS 

 In the field of antidiabetic drug discovery and development, the 

findings that TZDs are high affinity ligands for peroxisome proliferator-

activated receptor γ (PPARγ), opened channels for the extensive research [752, 

755, 775, 776, 779]. The binding of TZD activates PPARγ which functions as 

an essential transcriptional regulator of glucose and lipid homeostasis. PPARγ 

is the most broadly studied subtype among the three PPAR subtypes (namely 

designated as PPARα, PPARγ, and PPARδ). PPARγ, expressed 

predominantly in adipose tissue, regulate the expression of a constellation of 

genes which is closely related to adipocyte differentiation, glucose and lipid 

metabolism, insulin sensitivity, inflammatory responses and cell proliferation 

[757, 780]. The majority of reported PPARγ ligands like TZD, oxazolidinone 

and tetrazole possess a carboxylic acid or its heterocyclic bioisostere [780-

786].  There is also an example of non-TZD and non-carboxylic acid 

PPARγ agonists [777]. A novel class of pyridyloxybenzene-acylsulfonamides 
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as non-thiazolidinedione (TZD), non-carboxylic-acid-based selective PPARγ 

agonists has been reported by Rikimaru et al. [787].  

 The reported thirty four pyridyloxybenzene-acylsulfonamides are 

considered as the data set for this study [787]. These derivatives were 

evaluated for their transactivation activity against human PPARγ stably 

expressed in Chinese hamster ovary (CHO)–K1 cells. Transactivation 

activities were assessed by a luciferase reporter gene assay using (R)-5-(3-{4-

[(2-Furan-2-yl-5-methyl-1,3-oxazol-4-yl)methoxy]-3-methoxyphenyl}propyl)-

1,3oxazolidine -2,4-dione [778] as the reference PPARγ agonist and were 

reported as EC50. The general structure of these analogues is represented in 

Figure 4.8 and the structural variations of these analogues along with their 

reported pEC50, on molar basis, are mentioned in Table 4.13. 

 

N

R2R1

O

R3

R4

 

Figure 4.8: General structure of pyridyloxybenzene-acylsulfonamides.  

Table 4.13: Structural variations and reported PPARγ transactivation activities 

of pyridyloxybenzene-acylsulfonamides.  

S. 

No. 

R1 R2 R3 R4 pEC50
a 

1 CF3 Cl H 
N
H

S
(CH2)4Me

O
O O

 

7.21 

2 CF3 Cl i-PrO 
N
H

S
(CH2)4Me

O
O O

 

8.59 

3
b
 CF3 Cl MeO(CH2)2O 

N
H

S
(CH2)4Me

O
O O

 

8.82 
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4 CF3 Cl Et2NC(=O)CH2O 
N
H

S
(CH2)4Me

O
O O

 

8.16 

5 CF3 Cl 
O

N

O

 
N
H

S
(CH2)4Me

O
O O

 

8.47 

6 CF3 Cl MeO(CH2)2O 
N
H

S
(CH2)3OMe

O
O O

 

7.96 

7b CF3 Cl MeO(CH2)2O 
N
H

S

O
O O

 

7.49 

8
b
 CF3 Cl MeO(CH2)2O 

N
H

S

O
O O

Cl

 

8.07 

9
b
 CF3 Cl MeO(CH2)2O 

N
H

S
(CH2)4Me

O
O O

 

7.82 

10 CF3 Cl MeO(CH2)2O N
H

S
(CH2)4Me

O
O O

Me  

8.64 

11b CF3 Cl MeO(CH2)2O 
N
H

S
(CH2)4Me

O
O O

MeMe  

8.51 

12 CF3 Cl MeO(CH2)2O 
N
H

S
(CH2)4Me

O
O O

 

8.26 

13
b
 CF3 Cl MeO(CH2)2O N

H

S
(CH2)4Me

O
O O

Me  

8.28 

14b CF3 Cl MeO(CH2)2O N
H

S
(CH2)4Me

O
O O

OMe  

8.17 

15 CF3 Cl MeO(CH2)2O 
O N

H

S
(CH2)4Me

O
O O

 

8.00 

16* CF3 Cl MeO(CH2)2O 
N
H

S
(CH2)4Me

O
O O

 

7.03 
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17c CF3 H MeO(CH2)2O 
N
H

S
(CH2)4Me

O
O O

 

-c 

18c H Cl MeO(CH2)2O 
N
H

S
(CH2)4Me

O
O O

 

-c 

19 Cl Cl MeO(CH2)2O 
N
H

S
(CH2)4Me

O
O O

 

6.72 

20c NH2 Me MeO(CH2)2O 
N
H

S
(CH2)4Me

O
O O

 

-c 

21c MeCONH Me MeO(CH2)2O 
N
H

S
(CH2)4Me

O
O O

 

-c 

22 CF3 Cl i-PrO- 
N
H

S
(CH2)4Me

O
O O

 

7.59 

23 CF3 Cl c-PrO(CH2)2O 
N
H

S
(CH2)4Me

O
O O

 

8.21 

24 CF3 Cl MeO(CH2)3O 
N
H

S
(CH2)4Me

O
O O

 

8.13 

25
b
 CF3 Cl HO(CH2)2O 

N
H

S
(CH2)4Me

O
O O

 

7.10 

26 CF3 Cl MeC(=O)(CH2)3O 
N
H

S
(CH2)4Me

O
O O

 

7.23 

27 CF3 Cl MeSO2(CH2)3O 
N
H

S
(CH2)4Me

O
O O

 

6.49 

28 CF3 Cl NC(CH2)3O 
N
H

S
(CH2)4Me

O
O O

 

7.82 

29b CF3 Cl i-PrO 
N
H

(CH2)3Me

O

 

6.54 



229 

 

30 CF3 Cl MeO(CH2)2O 
N
H

S
(CH2)4Me

O O

 

7.49 

31 CF3 Cl MeO(CH2)2O 
N
H

C
OBu

O

 

7.42 

32
b
 CF3 Cl MeO(CH2)2O 

N
H

C
NHBu

O

 

7.32 

33 CF3 Cl MeO(CH2)2O 
O

C
N
H

O

S
(CH2)4Me

OO

 

8.35 

34 CF3 Cl MeO(CH2)2O C
N
H

O

S
N
H

OO
(CH2)4Me

 

8.96 

aEC50 (the effective concentration for 50% response of a given compound’s intrinsic 

maximum response) on molar basis, taken from reference [787]; bCompound included 

in test set; 
c
Compound with uncertain activity, not part of data set; *Benzene ring 

instead of pyridine ring. 

 

2.3.1. RESULTS AND DISCUSSION 

2.3.1.1. QSAR RESULTS 

For the purpose of modelling study, one third of total active compounds (10) 

have been included in the test set for the validation of the models derived from 

remaining 20 training set compounds. Compounds at S. No. 17, 18, 20 and 21 

(Table 4.13) having uncertain activities are not part of data set. Dragon 

software computed a total number of 496 descriptors, belonging to 0D- to 2D- 

modules but after the reduction of descriptor data set only 120 relevant 

descriptors were obtained. These 120 significant descriptors have been 

subjected to CP-MLR analysis with default “filters” set in it. Statistical models 

in two, three and four descriptors have been explored to achieve the best 

relationship correlating PPARγ transactivation activity. The obtained two and 

three descriptor models are given below. 

pEC50 = 7.153 + 2.563(0.541)Qindex – 2.460(0.554)BEHm4   

n = 20, r = 0.769, s = 0.452, F = 12.352, Q
2

LOO = 0.490, Q
2
L5O = 0.225 

r
2

Test = 0.297, FIT = 1.027, LOF = 0.271, AIC = 0.276          (4.24) 
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pEC50 = 7.420 + 2.279(0.575)Wap – 1.875(0.536)BEHm4   

n = 20, r = 0.712, s = 0.496, F = 8.768, Q
2

LOO = 0.303, Q
2
L5O = 0.185 

r
2

Test = 0.141, FIT = 0.730, LOF = 0.327, AIC = 0.333           (4.25) 

pEC50 = 6.582 + 1.811(0.554)MW – 3.195(0.680)T(O..S)  

+ 1.699(0.527)GATS1p   

n = 20, r = 0.823, s = 0.413, F = 11.268, Q
2

LOO = 0.540, Q
2
L5O = 0.573 

r
2

Test = 0.505, FIT = 1.165, LOF = 0.279, AIC = 0.256           (4.26) 

The descriptors Qindex, Wap and T(O..S) participated in above models 

are topological descriptors. Descriptors BEHm4, MW and GATS1p are from 

the constitutional (CONST), modified Burden eigenvalue (BCUT) and 2D-

autocorrealation (2D-AUTO) classes, respectively. Except BEHm4 and 

T(O..S), all the descriptors have shown positive influence on the activity as 

evident from the signs of regression coefficients. Thus a higher value of 

descriptors Qindex (Quadratic index), Wap (all-path Wiener index), MW 

(molecular weight) and GATS1p (Geary autocorrelation of lag-1/weighted by 

atomic polarizabilities) in addition to a lower value of the highest eigenvalue 

n.4 of Burden matrix/weighted by atomic masses (descriptor BEHm4) and 

sum of topological distances between O and S atoms (descriptor T(O..S)) 

would be beneficiary to the activity. The three descriptor model could estimate 

nearly 68% variance in observed activity of the compounds.  

 Considering the number of observation in the dataset, models with up 

to four descriptors were explored. It has resulted in 37 models with test set r
2 

> 

0.50. These models (with 120 descriptors) were identified in CP-MLR by 

successively incrementing the filter-3 with increasing number of descriptors 

(per equation). For this, the optimum r-bar value of the preceding level model 

(=0.786) has been used as the new threshold of filter-3 for the next generation. 

These models have shared 43 descriptors among them. All these shared 

descriptors along with their brief meaning, average regression coefficients, 

and total incidence are listed in Table 4.14, which will serve as a measure of 

their estimate across these models.  
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Table 4.14: Identified descriptors
a
 along with their class, average regression 

coefficient and incidence
b
, in modeling the PPARγ transactivation activities of 

pyridyloxybenzene-acylsulfonamides. 

Descriptor class, average regression coefficient  and (incidence) 

Constitutional descriptors 

(CONST) 

MW, 2.286 (17); nBM, -2.033 (1); nCIC, 0.826 

(2); ARR,-1.692 (2); RBN, 1.203 (2); RBF, 

0.966 (3); nDB, -1.756 (2); nN, 1.083 (1) 

Topological descriptors 

(TOPO) 

 

AAC, 1.986 (3); Qindex, 2.617 (6); GNar, 1.813 

(1); JhetZ, -1.360 (5); MAXDP, 1.319 (1); X1A, 

-1.363 (7); X2A, -1.112 (1); X1Av, -1.388 (1); 

S2K, -1.479 (2); Lop, -1.586 (1); IDDE, 1.574 

(6); SIC2, -1.944 (1); VEA1, 1.165 (1); 

T(N..Cl), 0.990 (6); T(O..S), -2.922 (16) 

Modified Burden Eigen 

values (BCUT) 

BEHm4, 1.720 (1) and -2.330 (15); BEHm7, 

1.462 (4); BELm7, -1.572 (2); BELm8, -1.897 

(1); BEHv1, -0.976 (3); BELv4, -2.323 (4); 

BELv8, 2.764 (1); BELp3, 1.379 (2) 

Galvez Topological charge 

indices (GALVEZ) 

GGI4, 1.946 (2); JGI3, 1.927 (2); JGI4, 1.330 

(1); JGI5, 0.796 (1); JGT, 1.588 (2) 

2D autocorrelations 

(2D-AUTO) 

MATS1v, -0.963 (1); MATS2e, 1.600 (1); 

MATS3e, 1.048 (1); GATS1v, 1.554 (2); 

GATS1p, 2.198 (11) 

Atom centered fragments 

(ACF) 

H-046, 2.005 (2); H-047, -1.255 (1) 

a
The descriptors are identified from the three parameter models for PPARγ binding 

activity transactivation activity emerged from CP-MLR protocol with filter-1 as 0.3, 

filter-2 as 2.0, filter-3 as 0.786 and filter-4 as 0.3 ≤ q2 ≤1.0 with a training set of 20 

compounds. 
b
The average regression coefficient of the descriptor corresponding to all 

models and the total number of its incidence. The arithmetic sign of the coefficient 

represents the actual sign of the regression coefficient in the models. CONST: MW, 

molecular weight; nBM, number of multiple bonds; nCIC, number of rings; ARR, 

aromatic ratio ; RBN, number of rotatable bonds; RBF, rotatable bond fraction; nDB, 

number of double bonds; nN, number of Nitrogen atoms; TOPO: AAC,mean 

information index on atomic composition; Qindex, Quadratic index; GNar, Narumi 

geometric topological index; JhetZ, Balaban-type index from Z weighted distance 

matrix (Barysz matrix); MAXDP, maximal electrotopological positive variation; 

X1A, average connectivity index chi-1; X2A, average connectivity index chi-2; 

X1Av, average valence connectivity index chi-1; S2K, 2-path Kier alpha-modified 

shape index; Lop, Lopping centric index; IDDE, mean information content on the 
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distance degree equality; SIC2, structural information content (neighborhood 

symmetry of 2-order); VEA1, eigenvector coefficient sum from adjacency matrix; 

T(N..Cl), sum of topological distances between N..Cl; T(O..S),- sum of topological 

distances between O..S; BCUT: BEHm4, highest eigenvalue n.4 of Burden 

matrix/weighted by atomic masses; BEHm7, highest eigenvalue n.7 of Burden 

matrix/weighted by atomic masses; BELm7, lowest eigenvalue n.7 of Burden 

matrix/weighted by atomic masses; BELm8, lowest eigenvalue n.8 of Burden 

matrix/weighted by atomic masses; BEHv1, highest eigenvalue n.1 of Burden 

matrix/weighted by van der Waals  volumes; BELv4, lowest eigenvalue n.4 of 

Burden matrix/weighted by van der Waals  volumes; BELv8, lowest eigenvalue n.8 

of Burden matrix/weighted by van der Waals  volumes; BELp3, lowest eigenvalue 

n.3 of Burden matrix/weighted by atomic polarizabilities; GALVEZ: GGI4, 

topological charge index of order 4; JGI3,mean topological charge index of order 3; 

JGI4, mean topological charge index of order 4; JGI5, mean topological charge index 

of order 5; JGT, global topological charge index; 2D-AUTO: MATS1v, Moran 

autocorrelation of lag-1/ weighted by atomic van der Waals  volumes; MATS2e, 

Moran autocorrelation of lag-2/ weighted by atomic Sanderson electronegativities; 

MATS3e, Moran autocorrelation of lag-3/ weighted by atomic Sanderson 

electronegativities; GATS1v, Geary autocorrelation of lag-1/ weighted by atomic van 

der Waals  volumes; GATS1p, Geary autocorrelation of lag-1/weighted by atomic 

polarizabilities; ACF: H-046, H attached to C0(sp3) no X attached to next C atom; 

H-047, H attached to C1(sp3) / C0(sp2).  

 

 The selected four-descriptor models for the PPARγ transactivation 

activities of pyridyloxybenzene-acylsulfonamides emerged through CP-MLR 

are presented through Eqs. (4.27) to (4.30). 

 

pEC50 = 6.025 + 2.640(0.407)Qindex + 1.131(0.345)T(N..Cl)  

– 2.345(0.437)BEHm4 + 1.131(0.392)GATS1v   

n = 20, r = 0.899, s = 0.329, F = 15.918, Q
2

LOO = 0.716, Q
2
L5O = 0.661 

r
2

Test = 0.602, FIT = 1.768, LOF = 0.225, AIC = 0.180                      (4.27) 

pEC50 = 6.554 + 0.828(0.308)RBN + 2.519(0.427)Qindex  

+ 0.840(0.357)T(N..Cl) – 2.369(0.447)BEHm4  

n = 20, r = 0.894, s = 0.337, F = 14.988, Q
2

LOO = 0.691, Q
2
L5O = 0.636 

r
2

Test = 0.548, FIT = 1.665, LOF = 0.236, AIC = 0.189           (4.28) 

pEC50 = 6.422 + 0.645(0.257)RBF + 2.773(0.422)Qindex  

+ 1.013(0.358)T(N..Cl) – 2.246(0.477)BEHm4  

n = 20, r = 0.889, s = 0.344, F = 14.205, Q
2

LOO = 0.665, Q
2
L5O = 0.655 
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r
2

Test = 0.512, FIT = 1.578, LOF = 0.247, AIC = 0.197           (4.29) 

pEC50 = 7.084 + 1.332(0.501)MW – 0.924(0.339)X1A  

– 3.321(0.577)T(O..S)  + 2.193(0.481)GATS1p   

n = 20, r = 0.885, s = 0.349, F = 13.683, Q
2

LOO = 0.648, Q
2
L5O = 0.628 

r
2

Test = 0.573, FIT = 1.520, LOF = 0.254, AIC = 0.203           (4.30) 

 The newly appeared descriptors in above models are, T(N..Cl) 

and X1A (topological descriptors); RBN and RBF (constitutional descriptors);  

and GATS1v (a 2D-AUTO class descriptor). Descriptors T(N..Cl), RBN, RBF 

and GATS1v have correlated positively to the PPARγ transactivation whereas 

descriptor X1A influenced it negatively.  

Thus from the signs of regression coefficients of these descriptors it is 

evident that higher values of the sum of topological distances between N and 

Cl atoms (descriptor T(N..Cl)), presence of more number of rotatable bonds 

(descriptor RBN), higher value of rotatable bond fraction (descriptor RBF) in 

a molecular structure and a higher value of Geary autocorrelation of lag-

1/weighted by atomic polarizabilities (GATS1p) would be beneficial to the 

activity, whereas a lower value of descriptor X1A (average connectivity index 

chi-1) would be advantageous to the activity.  

 These models have accounted for nearly 81% variance in the observed 

activities. In the randomization study (100 simulations per model), none of the 

identified models has shown any chance correlation. The values greater than 

0.5 of Q
2 

index is in accordance to a reasonable robust QSAR model. The 

pEC50 values of training set compounds calculated using Eqs. (4.27) to (4.30) 

and predicted from LOO procedure have been included in Table 4.15.  

 The models (4.27) to (4.30) are validated with an external test set of 10 

compounds mentioned in Table 4.13. The predictions of the test set 

compounds based on external validation are found to be satisfactory as 

reflected in the test set r
2
 (r

2
Test) values and the same is reported in Table 4.15. 

The plot showing goodness of fit between observed and calculated activities 

for the training and test set compounds is given in Figure 4.9. 
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Table 4.15: Observed and modeled PPARγ transactivation activity of 

pyridyloxybenzene-acylsulfonamides. 

S. 

No. 

  pEC50(M)
a
   

Obsd.
b
 Eq. (4.27) Eq. (4.28) Eq. (4.29) Eq. (4.30) 

Calc. Pred.
c
 Calc. Pred.

c
 Calc. Pred.

c
 Calc. Pred.

c
 

1 7.21 7.23 7.24 7.29 7.33 7.43 7.48 7.29 7.35 

2 8.59 8.24 8.18 8.32 8.28 8.39 8.36 8.14 8.06 

3
d
 8.82 8.08 -

d
 8.12 -

d
 8.14 -

d
 7.96 -

d
 

4 8.16 8.43 8.52 8.56 8.79 8.45 8.57 8.55 8.72 

5 8.47 8.62 8.70 8.52 8.55 8.49 8.50 8.53 8.56 

6 7.96 8.21 8.25 8.12 8.14 8.24 8.29 8.16 8.20 

7
d
 7.49 7.58 -

d
 7.85 -

d
 8.01 -

d
 7.40 -

d
 

8
d
 8.07 7.65 -

d
 7.84 -

d
 8.24 -

d
 7.19 -

d
 

9
d
 7.82 7.61 -

d
 7.51 -

d
 7.49 -

d
 7.67 -

d
 

10 8.64 8.20 8.16 8.28 8.23 8.24 8.19 8.19 8.15 

11
d
 8.51 8.52 -

d
 8.62 -

d
 8.56 -

d
 8.58 -

d
 

12 8.26 8.50 8.60 8.46 8.55 8.53 8.64 8.26 8.26 

13
d
 8.28 7.67 -

d
 7.61 -

d
 7.53 -

d
 7.91 -

d
 

14
d
 8.17 8.33 -

d
 8.35 -

d
 8.30 -

d
 8.42 -

d
 

15 8.00 8.21 8.24 8.12 8.14 8.24 8.28 8.19 8.24 

16 7.03 7.36 7.43 7.40 7.47 7.26 7.33 7.39 7.42 

17
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

18
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

19 6.72 6.81 6.91 6.76 6.82 6.77 6.85 6.39 6.14 

20
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

21
e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 -

e
 

22 7.59 7.73 7.75 7.68 7.70 7.70 7.73 7.85 7.89 

23 8.21 7.69 7.55 7.67 7.52 7.65 7.48 8.06 8.02 

24 8.13 7.63 7.59 7.58 7.53 7.45 7.37 7.77 7.73 

25
d
 7.10 7.31 -

d
 7.42 -

d
 7.41 -

d
 7.06 -

d
 

26 7.23 7.54 7.58 7.68 7.71 7.60 7.63 7.60 7.67 

27 6.49 6.49 6.49 6.50 6.51 6.57 6.88 6.55 6.84 

28 7.82 7.77 7.74 7.85 7.86 7.92 7.96 7.53 7.42 
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29
d
 6.54 7.20 -

d
 7.28 -

d
 7.26 -

d
 6.89 -

d
 

30 7.49 7.86 7.92 7.81 7.85 7.70 7.73 7.94 8.03 

31 7.42 7.22 7.13 7.18 7.07 7.20 7.09 7.65 7.75 

32
d
 7.32 7.63 -

d
 7.58 -

d
 7.59 -

d
 7.37 -

d
 

33 8.35 8.37 8.38 8.39 8.39 8.31 8.30 8.20 8.16 

34 8.96 8.62 8.49 8.56 8.43 8.57 8.43 8.49 8.37 

a
On molar basis; 

b
Taken from ref. [787]; 

c
Leave-one-out (LOO) procedure; 

d
Compound 

included in test set; 
e
Compound with uncertain activity, not part of data set.  

 

     

     

Figure 4.9: Plot of observed and calculated pEC50 values of training- and test-

set compounds for PPARγ transactivation.   

2.3.1.2. APPLICABILITY DOMAIN (AD) 

 To analyze the applicability domain (AD) a Williams plot of the model 

based on the whole data set (Table 4.16) has been constructed that is shown in 

Figure 4.10. On analyzing the model AD in the Williams plot it has appeared 

that none of the compounds were identified as an obvious outlier for the 

PPARγ transactivation activities if the limit of normal values for the Y outliers 
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(response outliers) was set as 3 (standard deviation) units. Two compounds 

listed in Table 4.12 at S. No. 8 and 27 found to have leverage (h) values 

greater than the threshold leverage (h*) suggesting them as chemically 

influential compounds. For both the training-set and test-set, the suggested 

model matches the high quality parameters with good fitting power and the 

capability of assessing external data.  

 Furthermore, all of the compounds were within the applicability 

domain of the proposed model and were evaluated correctly. 

     

     

Figure 4.10: Williams plot for PPARγ transactivation activity. The horizontal 

dotted line refers to the residual limit (±3×standard deviation) and the vertical 

dotted line represents threshold leverage h* (= 0.40). 

Table 4.16: Models derived for the whole data set (n = 30) for the PPARγ 

transactivation activity in descriptors identified through CP-MLR.  

 

Model r s F Eq. 

pEC50 = 5.889 + 2.887(0.392)Qindex  

+1.221(0.303)T(N..Cl)–2.381(0.461)BEHm4  
0.865 0.359 18.664 (4.27a) 
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+ 1.164(0.317)GATS1v   

pEC50 = 6.468 +0.850(0.281)RBN 

+2.669(0.429)Qindex + 0.890(0.319)T(N..Cl)  

– 2.416(0.494)BEHm4  

0.846 0.382 15.847 (4.28a) 

pEC50 = 6.399 + 0.663(0.248)RBF  

+2.872(0.430)Qindex + 0.919(0.328)T(N..Cl)  

– 2.353(0.526)BEHm4  

0.836 0.393 14.569 (4.29a) 

pEC50 = 7.116 + 1.730(0.450)MW 

– 0.903(0.321)X1A – 3.351(0.577)T(O..S)  

+ 1.853(0.359)GATS1p   

0.860 0.366 17.816 (4.30a) 

 

  

2.3.2. CONCLUSIONS 

 QSAR rationales have been obtained for the PPARγ transactivation 

activity of pyridyloxybenzene-acylsulfonamides in terms of 0D- to 2D-Dragon 

descriptors. The descriptors identified in CP-MLR analysis have highlighted 

the role of atomic mass, van der Waals volumes and polarizability through 

weighted 2D autocorrelations (GATS1v and GATS1p), modified Burden 

eigenvalue (BEHm4) and molecular weight (MW). Sum of topological 

distances between O and S (descriptor T(O..S)), and N and Cl (descriptor 

T(N..Cl)), average connectivity index chi-1(X1A) and Quadratic index 

(Qindex) have also shown dominance to optimize the PPARγ transactivation. 

Descriptors RBN and RBF suggested presence of rotatable bonds in a 

molecular structure for better PPARγ activity. Applicability domain analysis 

revealed that the suggested model matches the high quality parameters with 

good fitting power and the capability of assessing external data and all of the 

compounds was within the applicability domain of the proposed model and 

were evaluated correctly.  
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CHAPTER 5 

QSAR STUDIES ON GPR119 AGONISTS 

1. INTRODUCTION 

 Diabetes mellitus, characterized by high blood glucose levels, is a 

metabolic disorder and nearly 90% of all cases of diabetes belong to type 2 

diabetes mellitus (T2DM). Type 2 diabetes mellitus (T2DM), highly associated 

with obesity, is due to insulin resistance and impaired pancreatic β-cell 

function.  It is estimated in a study that nearly 350 million people suffering 

worldwide from diabetes [788] and it is supposed that this total will reach to 

642 million by 2040 [789]. Impaired insulin secretion and insulin resistance 

causes hyperglycemia which in long-term increases risk of micro- and macro-

vascular complications that may cause blindness, renal failure, diabetic foot 

disorders, heart attacks and strokes [790].  

 Multiple oral antidiabetic agents like sulfonylureas, meglitinides, 

biguanides, thiazolidinediones, α-glucosidase inhibitors and dipeptidyl-

peptidase-4 (DPP-4) inhibitors have been used to cure T2DM but many 

patients failed to achieve glycemic control at desired level [791-794]. A large 

number of T2DM patients fail to reach desired HbA1c levels due to 

insufficient glycemic control [795]. The glucose-lowering effect of sodium-

dependent glucose co-transporter 2 (SGLT2) inhibitor is devoid of hypo-

glycemia or weight gain. Thus there is a need to develop a novel glucose-

lowering drug to attain better glycemic control which protect pancreatic β-cells 

or exerts anti-obesity effects and devoid of causing hypoglycemia and 

cardiovascular side effects. In this direction, GPR119 [796-801] are the 

potential target for anti-diabetic therapy.  

 GPR119, a G-protein coupled receptor (GPCR), is expressed 

predominantly in the pancreatic β-cells and gastrointestinal L-cells. The 

identified endogenous agonists for the GPR119 receptor are oleoyl-

lysophosphatidylcholine and oleoylethanolamide (OEA) [802, 803]. Glucose-

dependent insulin secretion from pancreatic β-cells increases due to increased 

cellular cAMP levels on activation of the GPR119 receptor [804]. Release of 
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incretins like glucagon-like peptide 1 (GLP-1) and glucose-dependent 

insulinotropic polypeptide (GIP), from enteroendocrine cells are the results of 

the activation of the GPR119 receptor in the gut [805-807]. The stimulation of 

insulin secretion from β-cells in a glucose-dependent manner by GLP-1 and 

GIP protects β-cells against apoptosis [808, 809]. The activation of GPR119 is 

beneficial therapeutically for obesity [802, 810-812]. The GPR119 agonists 

demonstrated safety and tolerability in humans [813-816]. The investigations 

of several research groups [817, 818] on multiple small-molecule GPR119 

agonists led to the development of clinical compounds which include APD668 

[819], GSK1292263 [820] and MBX-2982 [821].  

2. MODELING STUDIES  

2.1. TRIAZOLOPYRIDINES AS hGPR119 AGONIST 

 The glucose-dependent dual mechanism of action of GPR119 agonists 

may improve glycemic control without inducing hypoglycemia. But, poor 

aqueous solubility of agonists causes low bioavailability, produces erratic 

assay results in in vitro studies and carries a high risk of not advancing due to 

potential toxicity which may not be recognized during preclinical studies [822, 

823]. Therefore, an attempt to improve aqueous solubility of GPR119 agonist a 

novel series of triazolopyridine derivatives have been reported by Matsuda et 

al. [824]. These derivatives are based on 3H-[1,2,3]triazolo[4,5-c]pyridine 

scaffold and having variations at central spacer, left-hand aryl group and right-

hand piperidine N-capping group. 

 The reported derivatives of triazolopyridine, having general structure 

shown in Figure 5.1, are the data set for present study.  

R1
X

Y N

N

N
R2

 

Figure 5.1: General structure of triazolopyridine derivatives. 
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These derivatives were evaluated for their agonistic activity against human 

GPR119 over-expressed in Flp-In-T-Rex-HEK293 cells by measuring changes 

in the cellular cAMP levels and were reported as EC50. The reported activity on 

molar basis (as pEC50) along with the structural variations of these analogues is 

shown in Table 5.1.  

Table 5.1: Structural variations and reported hGPR119 agonistic activities of 

triazolopyridine derivatives.   

Cpd.  R1 X Y R2 pEC50(M)
a
 

1 Me
S

O O

 
N CH 

N

N

Et

 

7.89 

2 
Me

S
O O

 
CH CH 

N

N

Et

 

7.85 

3
b
 

Me
S

O O

 
CMe CH 

N

N

Et

 

7.15 

4* 
Me

S
O O

 
CH CH 

N

N

Et

 

5.47 

5
b
 

Me
S

O O

 
CH N 

N

N

Et

 

7.51 

6 
Me

S
O O

 
N N 

N

N

Et

 

7.68 

7
b
 Me

S
O O

F  

N N 
N

N

Et

 

8.15 

8 

Me
S

O O

F

 

N N 
N

N

Et

 

8.05 

9
b
 EtHN

O

F  

N N 
N

N

Et

 

7.82 
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10 
EtHN

O

F

F

 

N N 
N

N

Et

 

8.70 

11 EtHN

O

FF  

N N 
N

N

Et

 

8.00 

12 EtHN

O

Me  

N N 
N

N

Et

 

7.72 

13 EtHN

O

Cl  

N N 
N

N

Et

 

7.89 

14 EtHN

O

CF3  

N N 
N

N

Et

 

7.22 

15 

EtHN

O

Me

 

N N 
N

N

Et

 

7.74 

16 

EtHN

O

Cl

 

N N 
N

N

Et

 

7.74 

17 
EtHN

O

F3C

 

N N 
N

N

Et

 

7.41 

18 
EtHN

O

Me

Me  

N N 
N

N

Et

 

7.08 

19 
EtHN

O

Me

Me  

N N 
N

N

Et

 

7.57 

20
b
 

Me
S

O O

 
N CH 

O

O
i-Pr

 

7.38 
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21
b
 

Me
S

O O

 
N CH 

O

O
t-Bu

 
7.70 

22
b
 

Me
S

O O

 
N CH 

O

O
i-Bu

 
7.96 

23 
Me

S
O O

 
N CH 

O

O

Me

Me

CHF2

 
7.64 

24 
EtHN

O

F

F

 

N CH 
O

O
i-Pr

 
8.00 

25 
EtHN

O

F

F

 

N N 
O

O
i-Pr

 
7.43 

26 
N
H

O

F

F

Me

Me
 

N N 
O

O
i-Pr

 
7.48 

27 
N

O

F

F

 

N N 
O

O
i-Pr

 
7.21 

28 
N

O

F

F

 

N N 
O

O
i-Pr

 
7.19 

a
EC50 (the the concentration of the test compound required to achieve 50% of the maximal 

response) on molar basis, taken from reference [824]; 
b
Compound included in test set; *4-

Methyl substituted indazole.  

 The data set was sub-divided into training set to develop models and 

test set to validate the models externally. The test set compounds which were 

selected using an in-house written randomization program, are also mentioned 

in Table 5.1. 

2.1.1. RESULTS AND DISCUSSION 

2.1.1.1. QSAR RESULTS 
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 A total number of 492 descriptors, belonging to 0D- to 2D- modules, 

computed by Dragon software have been utilized to obtain most appropriate 

models describing the biological activity. For the purpose of modeling study, 

07 (one fourth of total active) compounds have been included in the test set for 

the validation of the models derived from remaining 21 training set 

compounds. A total number of 99 relevant descriptors from 0D- to 2D- classes, 

which were obtained after the reduction of descriptor data set, have been 

subjected to CP-MLR analysis with default “filters” set in it. It has resulted in 

04 models with test set r
2 

> 0.50. These models have shared 10 descriptors 

among them. All these shared descriptors along with their brief meaning, 

average regression coefficients, and total incidence are listed in Table 5.2, 

which will serve as a measure of their estimate across these models. 

Table 5.2: Identified descriptors
a
 along with their class, average regression 

coefficient and incidence
b
, in modeling the hGPR119 agonistic activities of 

triazolopyridines. 

Descriptor class, average regression coefficient  and (incidence) 

Topological descriptors 

(TOPO) 

PW5, 2.374(3); IVDE, 1.128(2); LP1, -2.367(4)  

 

Modified Burden Eigen 

values (BCUT) 

BELm7, 0.980(1); BEHv8, -0.539(1) 

2D autocorrelations 

(2D-AUTO) 

MATS4m, 1.430(1); MATS2e, -0.722(1); 

MATS4e, 0.983 (1); MATS5e,1.223(1) 

Functional group counts  

(FUNC) 

nCp, -0.412(1) 

a
The descriptors are identified from the four parameter models for PPARγ binding activity 

transactivation activity emerged from CP-MLR protocol with filter-1 as 0.79, filter-2 as 2.0, 

filter-3 as 0.814 and filter-4 as 0.3 ≤ q2 ≤1.0 with a training set of 20 compounds. bThe average 

regression coefficient of the descriptor corresponding to all models and the total number of its 

incidence. The arithmetic sign of the coefficient represents the actual sign of the regression 

coefficient in the models. TOPO: PW5, path/walk 5-Randic shape index; IVDE, mean 

information vertex degree equality; LP1; Lovasz-Pelikan index (leading eigenvalue); BCUT: 

BELm7, lowest eigenvalue n.7 of Burden matrix/weighted by atomic masses; BELm8, lowest 

eigenvalue n.8 of Burden matrix/weighted by atomic masses; BEHv8, highest eigenvalue n.8 

of Burden matrix/weighted by van der Waals  volumes; 2D-AUTO: MATS4m, Moran 

autocorrelation of lag-4/ weighted by atomic masses; MATS2e, Moran autocorrelation of lag-

2/ weighted by atomic Sanderson electronegativities; MATS4e, Moran autocorrelation of lag-

4/ weighted by atomic Sanderson electronegativities; MATS5e, Moran autocorrelation of lag-

5/ weighted by atomic Sanderson electronegativities; FUNC: nCp, number of total primary 

C(sp3).  
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The models in four descriptors, for the hGPR119 agonistic activities of 

triazolopyridines, emerged through CP-MLR are mentioned below.  

pEC50 = 6.436 + 2.274(0.444)PW5 – 1.967(0.305)LP1  

+ 1.430(0.464)MATS4m – 0.721(0.266)MATS2e   

n = 21, r = 0.899, s = 0.297, F = 16.833, Q
2

LOO = 0.513, Q
2
L5O = 0.591,  

r
2

Test = 0.532, FIT = 1.819, LOF = 0.175, AIC = 0.143                               (5.1) 

pEC50 = 6.587 + 2.349(0.536)PW5 + 0.916(0.454)IVDE 

– 2.424(0.424)LP1 – 0.539(0.238)BEHv8 

n = 21, r = 0.885, s = 0.315, F = 14.465, Q
2

LOO = 0.545, Q
2
L5O = 0.557,              

r
2

Test = 0.661, FIT = 1.563, LOF = 0.198, AIC = 0.161                        (5.2) 

pEC50 = 6.865 –2.308(0.323)LP1 +0.980(0.365)BELm7 + 0.983(0.248) 

MATS4e + 1.223(0.390) MATS5e  

n = 21, r = 0.883, s = 0.317, F = 14.207, Q
2

LOO = 0.534, Q
2
L5O = 0.528,              

r
2

Test = 0.579, FIT = 1.535, LOF = 0.200, AIC = 0.164                        (5.3) 

pEC50 = 6.474 + 2.500(0.556)PW5 + 1.340(0.474)IVDE 

– 2.770(0.409)LP1 – 0.412(0.203)nCp 

n = 21, r = 0.879, s = 0.323, F = 13.596, Q
2

LOO = 0.562, Q
2
L5O = 0.598,               

r
2

Test = 0.522, FIT = 1.469, LOF = 0.207, AIC = 0.169                        (5.4) 

 The participated descriptors, PW5, IVDE and LP1, in above models 

belong to topological class.  It is apparent from the above mentioned equations 

that a higher value of path/walk 5-Randic shape index (PW5), and mean 

information vertex degree equality (IVDE) and a lower value of Lovasz-

Pelikan index (LP1) would be helpful to elevate the agonistic activity. 

Modified Burden eigenvalue (BCUT) class descriptors BELm7 (lowest 

eigenvalue n.7 of Burden matrix/weighted by atomic masses) and BEHv8 

(highest eigenvalue n.8 of Burden matrix/weighted by van der Waals volumes) 

have shown positive and negative contribution, respectively, to the activity 

suggesting a higher value of BELm7 and a lower value of BEHv8 beneficiary 

to the activity. Except MATS2e, all the participated 2D-autocoorelation 
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descriptors namely MATS4m, MATS4e and MATS5e contributed positively to 

the activity. Thus it may be inferred that a lower value of MATS2e (Moran 

autocorrelation of lag-2/weighted by atomic Sanderson electronegativities) and 

higher values of MATS4m (Moran autocorrelation of lag-4/weighted by atomic 

masses), MATS4e (Moran autocorrelation of lag-4/weighted by atomic 

Sanderson electronegativities) and MATS5e (Moran autocorrelation of lag-

5/weighted by atomic Sanderson electronegativities) would be helpful for 

better activity. 

 Additionally, presence of higher number of total sp3 hybridized carbon 

atoms in a molecular structure (nCp, functional group class descriptor) would 

be detrimental to the activity. Nearly 81% variance in the observed activity has 

been accounted by these models. None of the CP-MLR identified model has 

shown any chance correlation in the randomization study (100 simulations per 

model). The values of Q
2 

index, greater than a specified cutoff (0.5), hint that 

derived models are reasonable robust QSAR models. The pEC50 values of 

training set compounds calculated using Eqs. (5.1) to (5.4) and predicted from 

LOO procedure have been included in Table 5.3.  

Table 5.3: Observed and modeled hGPR119 activity of triazolopyridines.  

S. 

No. 

pEC50(M)
a
 

Obsd
b
. 

Eq. (5.1) Eq. (5.2) Eq. (5.3) Eq. (5.4) 

Calc. Pred
c
. Calc. Pred

c
. Calc. Pred

c
. Calc. Pred

c
. 

1 7.89 7.95 7.96 7.86 7.86 7.89 7.89 7.90 7.90 

2 7.85 7.82 7.82 7.86 7.87 7.92 7.93 7.90 7.91 

3
d
 7.15 6.72 -

d
 7.02 -

d
 6.79 -

d
 6.81 -

d
 

4 5.47 5.67 6.18 5.71 6.22 5.91 6.44 5.70 6.19 

5
d
 7.51 7.82 -

d
 7.86 -

d
 7.73 -

d
 7.90 -

d
 

6 7.68 7.96 8.00 7.86 7.90 7.80 7.82 7.90 7.94 

7
d
 8.15 8.16 -

d
 8.02 -

d
 8.10 -

d
 8.14 -

d
 

8 8.05 7.80 7.77 7.80 7.76 8.30 8.38 7.92 7.90 
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9
d
 7.82 8.04 -

d
 7.88 -

d
 7.91 -

d
 7.81 -

d
 

10 8.70 8.23 8.03 8.09 7.91 8.33 8.04 8.07 7.89 

11 8.00 7.68 7.61 7.49 7.40 7.80 7.76 7.42 7.35 

12 7.72 7.64 7.62 7.63 7.61 7.51 7.48 7.60 7.57 

13 7.89 7.97 7.98 7.88 7.88 7.55 7.51 7.81 7.79 

14 7.22 6.90 6.59 7.00 6.95 6.59 6.39 7.19 7.19 

15 7.74 7.83 7.85 7.87 7.90 7.52 7.46 7.83 7.85 

16 7.74 8.11 8.16 8.07 8.15 7.95 7.98 8.03 8.09 

17 7.41 7.56 7.72 7.85 7.97 7.73 7.90 8.09 8.35 

18 7.08 7.09 7.10 7.02 6.99 7.18 7.22 7.07 7.07 

19 7.57 7.37 7.31 7.40 7.28 7.53 7.51 7.53 7.51 

20
d
 7.38 7.19 -

d
 7.70 -

d
 7.39 -

d
 7.69 -

d
 

21
d
 7.70 7.68 -

d
 7.73 -

d
 7.55 -

d
 7.62 -

d
 

22
d
 7.96 7.93 -

d
 7.97 -

d
 7.62 -

d
 7.97 -

d
 

23 7.64 7.26 6.69 7.43 6.98 7.85 7.96 7.52 7.30 

24 8.00 7.69 7.66 7.97 7.97 7.70 7.65 7.85 7.82 

25 7.43 7.71 7.74 7.97 8.12 7.45 7.46 7.85 7.96 

26 7.48 7.80 7.88 7.68 7.72 7.57 7.61 7.36 7.31 

27 7.21 7.36 7.37 7.26 7.27 7.19 7.19 7.22 7.22 

28 7.19 7.57 7.65 7.24 7.25 7.70 7.77 7.20 7.20 
aOn molar basis; bTaken from ref. [824]; cLeave-one-out (LOO) procedure; dCompound 

included in test set.  

The models (5.1) to (5.4) are validated with an external test set of 7 

compounds mentioned in Table 5.1. The test set r
2
 (r

2
Test) values greater than 

0.5 of these models reflect that these models have satisfactory external 

validation capability. The predicted activity values of test set compounds are in 

tune to the observed ones and the same is mentioned in Table 5.3. The plot 

showing goodness of fit between observed and calculated activities for the 

training and test set compounds is given in Figure 5.2. 
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Figure 5.2: Plot of observed and calculated pEC50 values of training- and test-

set compounds for hGPR119 agonistic activity of triazolopyridines.   

 
2.1.1.2. Applicability domain (AD) 

 On analyzing the model AD in the Williams plot, shown in Figure 5.3, 

of the model based on the whole dataset (Table 5.4), it has appeared that none 

of the compounds were identified as an obvious outlier for the hGPR119 

activity of triazolopyridines if the limit of normal values for the Y outliers 

(response outliers) was set as 3 (standard deviation) units. One compound 

listed in Table 5.1 at S. No. 4 found to have leverage (h) values greater than the 

threshold leverage (h*) suggesting this training set compound as chemically 

influential compound. For both the training-set and test-set, the suggested 

model matches the high quality parameters with good fitting power and the 

capability of assessing external data. Furthermore, all of the compounds were 

within the applicability domain of the proposed model and were evaluated 

correctly. 
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Table 5.4: Models derived for the whole data set (n = 28) for the hGPR119 

agonistic activity in descriptors identified through CP-MLR.  

Model r s F Eq. 

pEC50 = 6.525 +2.074(0.353)PW5  

–1.783(0.254)LP1+1.362(0.349)MATS4m  

–0.685(0.223)MATS2e 

0.887 0.273 21.332 (5.1a) 

pEC50 = 6.391 +2.536(0.444)PW5 

+1.032(0.337)IVDE –2.370(0.329)LP1  

–0.559(0.199)BEHv8 

0.882 0.279 20.182 (5.2a) 

pEC50 = 6.956 –2.210(0.270)LP1  

+0.895(0.262)BELm7+0.924(0.204)MATS4e  

+1.140(0.263)MATS5e 

0.874 0.288 18.632 (5.3a) 

pEC50 = 6.326 +2.595(0.468)PW5  

+1.418(0.371)IVDE –2.650(0.332)LP1  

–0.380(0.169)nCp 

0.869 0.293 17.803 (5.4a) 

 

      

      

Figure 5.3: Williams plot for the training-set and test- set compounds for 

hGPR119 agonistic activity. The horizontal dotted line refers to the residual 

limit (±3×standard deviation) and the vertical dotted line represents threshold 

leverage h* (= 0.540). 
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2.1.2. CONCLUSIONS 

 QSAR study has been carried out on the hGPR119 agonistic activity of 

triazolopyridines in 0D- to 2D-Dragon descriptors. The descriptors identified 

in CP-MLR analysis have highlighted the role of molecular topology 

accounting features path/walk 5-Randic shape index (PW5), mean information 

vertex degree equality (IVDE), Lovasz-Pelikan index (LP1) in addition to 

atomic properties such as mass, van der Waals volume, and Sanderson 

electronegativity through weighted 2D autocorrelations (MATS4m, MATS2e, 

MATS4e and MATS5e) and modified Burden eigenvalues (BELm7 and 

BEHv8).  Counts of total primary sp3 hybridized carbon atoms in a molecular 

structure (descriptor nCp) have also shown significance to optimize the 

hGPR119 agonistic activity. Applicability domain analysis revealed that the 

suggested model matches the high quality parameters with good fitting power 

and the capability of assessing external data and all of the compounds was 

within the applicability domain of the proposed model and were evaluated 

correctly. 

2.2. INDOLE-BASED DERIVATIVES AS GPR119 AGONIST 

 Poor aqueous solubility of present GPR119 agonist causes low 

bioavailability has made a scope for further development of novel agonist.  As 

an attempt to develop a novel GPR119 agonist for the treatment of T2DM, a 

series of indoline-based compounds has been reported by Sato et al. [825].The 

reported twenty six indole-based derivatives is considered as the data set for 

present study [825]. The general structure of these analogous is represented in 

Figure 5.4.  

N

N
R4

S

R1

R2
R3

Me

OO

Linker

 

Figure 5.4: General structure of indole-based GPR119 agonists 
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 These derivatives were evaluated for their GPR agonist activities in the 

reporter gene assay using CHO cells stably co-expressing cyclic AMP response 

element (CRE)–luciferase reporter gene (Promega) and GPR119 and were 

reported as EC50. The reported activity on molar basis (as pEC50) along with 

the structural variations of these analogues is shown in Table 5.5. The data set 

was sub-divided into training set to develop models and test set to validate the 

models externally. The test set compounds which were selected using an in-

house written randomization program, are also mentioned in Table 5.5. 

Table 5.5: Structural variations and reported GPR119 agonistic activities of 

indole-based derivatives.   

Cpd. R1 R2 R3 Linker R4 pEC50(M)
a
 

1 H H H  

O

O

Me

Me
Me

 

5.85 

2 H H H O

 O

O

Me

Me
Me

 

6.92 

3 H H H 

O

O

 O

O

Me

Me
Me

 

7.17 

4 H H H 

N
H

O

 
O

O

Me

Me
Me

 

5.60 

5
b
 H H H 

O

O Me

 O

O

Me

Me
Me

 

5.59 

6 H H H 

O

O

Me  

O

O

Me

Me
Me

 

8.08 

7 H H H 

O

O

OH  

O

O

Me

Me
Me

 

5.62 

8 F H H 

O

O

 O

O

Me

Me

 

7.60 

9
b
 Cl H H 

O

O

 O

O

Me

Me

 

6.28 

10 Me H H 

O

O

 O

O

Me

Me

 

6.11 
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11 H F H 

O

O

 O

O

Me

Me

 

6.80 

12 H OMe H 

O

O

 O

O

Me

Me

 

5.32 

13 H H F 

O

O

 O

O

Me

Me

 

7.60 

14 H H Cl 

O

O

 O

O

Me

Me

 

7.68 

15 H H Me 

O

O

 O

O

Me

Me

 

7.36 

16 H H OMe 

O

O

 O

O

Me

Me

 

5.77 

17
b
 H H F 

O

O

Me  

O

O

Me

Me

 

8.17 

18 H H F 

O

O

Me  

N

N

Et

 

8.41 

19 H H H 

O  
O

O

Me

Me

 

6.31 

20
b
 H H H N

O  
O

O

Me

Me

 

7.06 

21 H H H N N

O  
O

O

Me

Me

 

7.77 

22
c
 H H H N

N O  
O

O

Me

Me

 

5.06 

23 H H H N

N

N

O  
O

O

Me

Me

 

6.28 

24
b
 H H H N N

N

 

O

O

Me

Me
Me

 

7.80 
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25 H H H N N

O  

N

N

Et

 

7.96 

26 H H H N N

O  

O

N

N Me

Me 

8.11 

a
EC50 (the the concentration of the test compound required to achieve 50% of the maximal 

response) on molar basis, taken from reference [825]; 
b
Compound included in test set; 

c
Outlier 

compound.  

2.2.1. RESULTS AND DISCUSSION 

2.2.1.1. QSAR RESULTS 

 Primary observation of the data set revealed that one compound (S. No. 

22, Table 5.5) does not fit in the trend of data set. Thus this compound has 

been excluded in deriving QSAR models. There are many reasons for their 

occurrence in QSAR studies; for example, chemicals might be acting by a 

mechanism different from that of the majority of the data points. It is also 

likely that outlier might be a result of a random experimental error that could 

be significant when analyzing a large data set. For the purpose of modeling 

study, 05 (one fifth of total active) compounds have been included in the test 

set for the validation of the models derived from remaining 20 training set 

compounds. 

 A total number of 485 descriptors, belonging to 0D- to 2D- modules, 

computed by Dragon software have been utilized to obtain most appropriate 

models describing the biological activity.122 relevant descriptors from 0D- to 

2D- classes, which were obtained after the reduction of descriptor data set, 

have been subjected to CP-MLR analysis with default “filters” set in it. 

Statistical models in two and three descriptors have been explored to achieve 

the best relationship correlating GPR119 agonistic activity. All the models 

obtained in two descriptors were having the r
2

Test value less than 0.5. The 

obtained, all the three models, in three descriptors are given below through 

Eqs. (5.5) to (5.7). These models (with 122 descriptors) were identified in CP-

MLR by successively incrementing the filter-3 with increasing number of 

descriptors (per equation). For this, the optimum r-bar value of the preceding 



 

257 
 

level model (=0.699, r-bar value of the two parameter model having highest 

r
2

Test) has been used as the new threshold of filter-3 for the next generation.  

pEC50 = 7.980 + 3.264(0.936)GGI8 – 2.038(0.500)ATS7e  

– 1.702(0.485)GATS1e   

n = 20, r = 0.853, s = 0.559, F = 14.290, Q
2

LOO = 0.549, Q
2
L5O = 0.689 

r
2

Test = 0.788, FIT = 1.478, LOF = 0.511, AIC = 0.470              (5.5) 

pEC50 = 7.458 + 3.461(1.038)GGI8 – 2.003(0.536)ATS7e  

– 3.475(1.173)Hy 

n = 20, r = 0.830, s = 0.598, F = 11.846, Q
2

LOO = 0.531, Q
2
L5O = 0.510 

r
2

Test = 0.700, FIT = 1.225, LOF = 0.584, AIC = 0.537              (5.6) 

pEC50 = 8.151 + 2.585(0.891)LP1 – 1.993(0.444)BELp8 

– 2.535(0.562)MATS7m  

n = 20, r = 0.826, s = 0.604, F = 11.477, Q
2

LOO = 0.575, Q
2
L5O = 0.612 

r
2

Test = 0.538, FIT = 1.187, LOF = 0.597, AIC = 0.548              (5.7) 

 The participated descriptors, ATS7e, MATS7m and GATS1e, in above 

models belong to 2D-AUTO class.  It is apparent from the above mentioned 

equations that a lower values of  Broto-Moreau autocorrelation of a topological 

structure of lag-7 weighted by atomic Sanderson electronegativities (ATS7e), 

Moran autocorrelation of lag-6 weighted by atomic masses and Geary 

autocorrelation of lag-1 weighted by atomic Sanderson electronegativities 

would be helpful to elevate the agonistic activity. The topological class 

descriptor LP1 (Lovasz-Pelikan index) and Galvez class descriptor (8
th

 order 

Galvez topological charge index, GGI8) shown positive correlation to the 

activity suggesting higher values of these as beneficial to the activity. The 

negative sign of correlation coefficient of modified Burden eigenvalue (BCUT) 

class descriptor BELp8 (lowest eigenvalue n.8 of Burden matrix/weighted by 

atomic polarizabilities and PROP class descriptor Hy (hydrophilic factor) 

advocated that a lower value of descriptor BELp8 and less hydrophilic factor 

or nature of molecule would be advantageous to the activity.   
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 The three descriptor models could estimate nearly 73% variance in 

observed activity of the compounds. Considering the number of observation in 

the dataset, models with up to four descriptors were explored through CP-MLR 

and the result was 27 four-parameter models with test set r
2
> 0.50 sharing 40 

descriptors among them. The shared descriptors along with their brief physical 

meaning, average regression coefficients, and total incidence are listed in Table 

5.6, which will serve as a measure of their estimate across these models.  

Table 5.6: Identified descriptors
a
 along with their class, average regression 

coefficient and incidence
b
, in modeling the GPR119 agonistic activities of 

indole-based compounds. 

Descriptor class, average regression coefficient  and (incidence) 

Constitutional 

descriptors (CONST) 

AMW, 2.560(1); Mv, 2.958(1), -1.937(1); nAT, 

3.015(1);      nDB,0.634(1); nO,-1.343(1) 

Topological descriptors 

(TOPO) 

ZM2V, 2.406(1); MSD, -3.249(2); MAXDP, 

1.889(1); X1A, -1.964(1); PW4, -1.570(1); AECC,  

-1.989(1); IC1, 3.103(1); LP1, 2.517(1)  

Molecular walk counts 

(MWC) 

MWC10, -0.860(1) 

Modified Burden Eigen 

values (BCUT) 

BEHm2, 2.038(1); BELm5, 2.459(7); BEHv5, 

2.113(1); BELv1, -1.229(1); BELv2,-1.528(1); 

BELe8, -1.596(5); BELp8,-1.616(2) 

Galvez topological 

charge indices (GVZ) 

GGI5,-1.342(1);GGI8,3.396(18) 

2D autocorrelations 

(2D-AUTO) 

ATS6v, -3.354(1); ATS6e, -2.152(1);  ATS7e, 

-2.466(9); ATS7p,-3.955(5); MATS6m,1.759(2); 

MATS7m, -2.651(1); MATS5v, -2.126(2); 

MATS6v, 1.977(2); MATS1e, 1.529(1); MATS3p, 

-2.721(4); GATS1e, -2.382(3); GATS4e, 2.088(1) 

Atom centered 

fragments (ACF) 
C-008, -1.072(1); C-029,1.136(2); H-046,2.491(4); 

H-050, -1.647(10) 

Molecular properties  

(PROP)  

Hy, -3.595(6) 

a
The descriptors are identified from the four parameter models for PPARγ binding activity 

transactivation activity emerged from CP-MLR protocol with filter-1 as 0.79, filter-2 as 2.0, 

filter-3 as 0.822 and filter-4 as 0.3 ≤ q2 ≤1.0 with a training set of 20 compounds. bThe average 

regression coefficient of the descriptor corresponding to all models and the total number of its 

incidence. The arithmetic sign of the coefficient represents the actual sign of the regression 

coefficient in the models. CONST: AMW,average molecular weight; Mv,mean atomic van der 

Waals volume (scaled on Carbon atom); nAT,number of atoms; nDB,number of double bonds; 

nO,number of Oxygen atoms; TOPO: ZM2V, second Zagreb index by valence vertex degrees; 

MSD,mean square distance index (Balaban); MAXDP, maximal electrotopological positive 
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variation; X1A, average connectivity index chi-1; PW4,  path/walk 4-Randic shape index; 

AECC, average eccentricity; IC1, information content index (neighborhood symmetry of 1-

order) ; LP1, Lovasz-Pelikan index (leading eigenvalue); MWC: MWC10, molecular walk 

count of order 10; BCUT:BEHm2, highest eigenvalue n.2 of Burden matrix/weighted by 

atomic masses; BELm5, lowest eigenvalue n.5 of Burden matrix/weighted by atomic masses; 

BEHv5, highest eigenvalue n.5 of Burden matrix/weighted by van der Waals  volumes; 

BELv1, lowest eigenvalue n.1 of Burden matrix/weighted by van der Waals  volumes BELv2,  

lowest eigenvalue n.2 of Burden matrix/weighted by van der Waals  volumes; BELe8, lowest 

eigenvalue n.8 of Burden matrix/weighted by atomic Sanderson electronegativities, BELp8, 

lowest eigenvalue n.8 of Burden matrix/weighted by atomic polarizabilities; 2D-

AUTO:ATS6v,Broto-Moreau autocorrelation of a topological structure - lag 6 / weighted by 

atomic van der Waals volumes; ATS6e,Broto-Moreau autocorrelation of a topological structure 

-lag 6/weighted by atomic Sanderson electronegativities; ATS7e,Broto-Moreau autocorrelation 

of a topological structure -lag 7/weighted by atomic Sanderson electronegativities; 

ATS7p,Broto-Moreau autocorrelation of a topological structure - lag 7 / weighted by atomic 

polarizabilities;  MATS6m,Moran autocorrelation - lag 6 / weighted by atomic masses; 

MATS7m,   Moran autocorrelation - lag 7 / weighted by atomic masses; MATS5v,Moran 

autocorrelation - lag 5 /weighted by atomic van der Waals volumes; MATS6v, Moran 

autocorrelation - lag 6 /weighted by atomic van der Waals volumes; MATS1e, Moran 

autocorrelation of lag-1/weighted by atomic Sanderson electronegativities; MATS3p; Moran 

autocorrelation of lag-3/weighted by atomic polarizabilities;  GATS1e, Geary autocorrelation 

of lag-1/weighted by atomic Sanderson electronegativities;  GATS4e, Geary  autocorrelation of 

lag-4/weighted by atomic Sanderson electronegativities;  GALVEZ:  GGI5,topological charge 

index of order 5; GGI8, topological charge index of order 8; ACF:C-008,CHR2X;  C-029, R--

CX—X; H-046,H attached to C0(sp3) no X attached to next C;  H-050, H attached to 

heteroatom; PROP: Hy, hydrophilic factor.  

The selected models, in four parameters are given below.  

pEC50 = 6.142 + 2.359(0.639)BELm5 + 4.496(0.825)GGI8  

– 3.661(0.828)ATS7p  – 1.185(0.410)H-050   

n = 20, r = 0.888, s = 0.509, F = 14.010, Q
2

LOO = 0.651, Q
2
L5O = 0.607 

r
2

Test = 0.550, FIT = 1.556, LOF = 0.541, AIC = 0.432              (5.8) 

pEC50 = 7.812 + 2.891(0.833)GGI8 – 2.094(0.502)ATS7e  

– 1.072(0.372)C-008  – 1.453(0.409)H-050   

n = 20, r = 0.888, s = 0.509, F = 13.994, Q
2

LOO = 0.624, Q
2
L5O = 0.703 

r
2

Test = 0.745, FIT = 1.554, LOF = 0.541, AIC = 0.433              (5.9) 

pEC50 = 6.316 + 2.163(0.922)GGI8 – 2.820(0.490)GATS1e  

+ 2.088(0.589)GATS4e  + 1.307(0.355)C-029   

n = 20, r = 0.887, s = 0.511, F = 13.904, Q
2

LOO = 0.604, Q
2
L5O = 0.514  

r
2

Test = 0.697, FIT = 1.544, LOF = 0.544, AIC = 0.435            (5.10) 
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pEC50 = 8.553 + 2.516(0.760)LP1 – 2.066(0.380)BELp8  

– 2.651(0.481)MATS7m – 2.459(0.927)Hy   

n = 20, r = 0.885, s = 0.515, F = 13.610, Q
2

LOO = 0.699, Q
2
L5O = 0.637 

r
2

Test = 0.540, FIT = 1.512, LOF = 0.553, AIC = 0.442            (5.11) 

 The newly appeared descriptors in above models C-008, C-029 and H-

050 are from the atom centered fragment (ACF) class of descriptors. 

Descriptor BELm5 belong to BCUT class and the remaining two ATS7p and 

GATS4e are 2D-autocorrelations. The signs of regression coefficients of ACF 

descriptors suggested absence of CHR2X type fragment (descriptor C-008) and 

H attached to heteroatom (descriptor H-050) and presence of R--CX--X type 

structural fragment (descriptor C-029) beneficial to the activity. 

 Additionally, higher values of descriptors BELm5 (lowest eigenvalue 

n.5 of Burden matrix/weighted by atomic masses) and GATS4e (Geary 

autocorrelation of lag-4/weighted by atomic Sanderson electronegativities), 

and a lower value of descriptor ATS7p (Broto-Moreau autocorrelation of a 

topological structure - lag 7/weighted by atomic polarizabilities) would be 

advantageous to the agonistic activity.   

 Nearly 79% variance in the observed activity has been accounted by 

these models. None of the CP-MLR identified model has shown any chance 

correlation in the randomization study (100 simulations per model). The values 

of Q
2 

index, greater than a specified cutoff (0.5), hint that derived models are 

reasonable robust QSAR models. The pEC50 values of training set compounds 

calculated using Eqs. (5.8) to (5.11) and predicted from LOO procedure have 

been included in Table 5.7.  

 The models (5.8) to (5.11) are validated externally with test set of 5 

compounds mentioned in Table 5.5. The test set r
2
 (r

2
Test) values greater than 

0.5 of these models reflect that these models have satisfactory external 

validation capability. The predicted activity values of test set compounds are in 

tune to the observed ones and the same is mentioned in Table 5.7. The plot 

showing goodness of fit between observed and calculated activities for the 

training and test set compounds is given in Figure 5.4. 
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Figure 5.5: Plot of observed and calculated pEC50 values of training- and test-

set compounds for indole-based GPR119 agonists. 

Table 5.7: Observed and modeled GPR119 activity of indole-based agonists.  

Cpd. 

pEC50(M)a 

Obsdb 

Eq. (5.8) Eq. (5.9) Eq. (5.10) Eq. (5.11) PLS 

Calc Prec Calc Prec Calc Prec Calc Prec Calc Prec 

1 5.85 5.87 5.88 6.16 6.28 5.95 6.06 6.10 6.26 6.31 6.52 

2 6.92 6.47 6.37 6.54 6.43 7.23 7.34 6.49 6.41 6.82 6.79 

3 7.17 6.43 6.35 7.08 7.07 6.51 6.46 6.65 6.58 6.80 6.77 
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4 5.60 5.38 4.97 5.36 4.97 6.43 6.52 6.52 6.66 5.96 6.04 

5
d
 5.59 6.42 -

d
 5.70 -

d
 6.46 -

d
 6.41 -

d
 6.26 -

d
 

6 8.08 8.21 8.31 7.73 7.47 7.45 7.18 7.31 7.17 7.66 7.55 

7 5.62 5.84 6.25 5.86 6.25 6.04 6.39 5.63 5.87 5.38 5.31 

8 7.60 7.06 6.91 6.89 6.72 7.24 7.11 7.43 7.38 7.15 7.12 

9d 6.28 6.89 -d 6.90 -d 6.79 -d 7.23 -d 6.94 -d 

10 6.11 6.74 6.85 6.62 6.71 6.73 6.89 6.26 6.33 6.54 6.61 

11 6.80 6.98 7.03 6.89 6.92 6.39 6.32 7.11 7.15 6.88 6.88 

12 5.32 5.69 5.80 6.01 6.15 5.09 4.98 5.38 5.42 5.43 5.46 

13 7.60 7.89 7.96 7.42 7.40 7.40 7.37 7.46 7.43 7.40 7.39 

14 7.68 7.56 7.54 7.44 7.42 7.34 7.29 7.46 7.42 7.35 7.33 

15 7.36 7.39 7.39 7.05 7.03 7.37 7.37 7.56 7.60 7.22 7.21 

16 5.77 6.48 6.59 6.07 6.20 6.08 6.13 5.69 5.66 5.67 5.65 

17
d
 8.17 9.12 -

d
 7.78 -

d
 8.01 -

d
 8.18 -

d
 8.08 -

d
 

18 8.41 8.71 8.93 8.74 8.93 8.29 8.22 8.22 8.00 8.61 8.67 

19 6.31 6.57 6.63 6.23 6.19 6.82 6.86 6.76 6.82 6.63 6.65 

20
d
 7.06 7.15 -

d
 6.40 -

d
 6.53 -

d
 6.66 -

d
 6.65 0.00 

21 7.77 7.02 6.95 6.72 6.44 7.40 7.17 6.75 6.66 7.11 7.05 

22e 5.06 -e -e -e -e -e -e -e -e -e -e 

23 6.28 6.80 6.98 6.99 7.18 6.12 6.07 6.79 6.83 6.59 6.64 

24
d
 7.80 8.04 -

d
 8.21 -

d
 7.56 -

d
 7.21 -

d
 6.78 -

d
 

25 7.96 7.90 7.88 8.35 8.46 7.58 7.33 8.34 8.46 8.31 8.39 

26 8.11 7.35 7.14 8.16 8.17 8.86 9.39 8.41 8.51 8.49 8.60 
a
On molar basis; 

b
Taken from ref. [825]; 

c
Leave-one-out (LOO) procedure; 

d
Compound 

included in test set; 
e
Oulier compound. 

 A partial least square (PLS) analysis has been carried out on these 13 

descriptors, emerged in above mentioned models (5.8) to (5.11), to facilitate 

the development of a “single window” structure–activity model. For the 

purpose of PLS, the descriptors have been autoscaled (zero mean and unit SD) 

to give each one of them equal weight in the analysis. In the PLS cross-

validation, two components are found to be the optimum for these 13 

descriptors and they explained 87.79% variance in the activity. The MLR-like 

PLS coefficients of these 13 descriptors are given in Table 5.8. 

 The PLS analysis has suggested ATS7e as the most determining 

descriptor for modeling the agonistic activity of the compounds (descriptor S. 

No. 5 in Table 5.8; Figure 5.5). The other descriptors in decreasing order of 

significance are GGI8, BELp8, H-050, MATS7m, GATS1e, C-029, BELm5, 

GATS4e, Hy, C-008, ATS7p and LP1 and convey same inference in the PLS 

model as well. It is also observed that PLS model from the dataset devoid of 

these 13 descriptors is inferior in explaining the activity of the analogues. 
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Table 5.8: PLS and MLR-like PLS models from the 13 descriptors of four 

parameter CP-MLR models for GPR119 agonistic activities.  

A: PLS equation 

PLS components PLS coefficient (s.e.)
a
 

Component-1 -0.561(0.052) 

Component-2 0.141(0.045) 

Constant 6.916 

B: MLR-like PLS equation 

S. 

No. 
Descriptor 

MLR-

like 

coef.
b
 

 (f.c.)
c
 Order  

S. 

No. 
Descriptor 

MLR-

like 

coef.
b
 

 (f.c.)
c
 Order  

1 LP1 0.030 0.013 13 8 GATS1e -0.217 -0.097 6 

2 BELm5 0.163 0.073 8 9 GATS4e 0.133 0.059 9 

3 BELp8 -0.230 -0.103 3 10 C-008 -0.100 -0.045 11 

4 GGI8 0.235 0.105 2 11 C-029 0.199 0.088 7 

5 ATS7e -0.272 -0.121 1 12 H-050 -0.228 -0.102 4 

6 ATS7p -0.089 -0.040 12 13 Hy -0.126 -0.056 10 

7 MATS7m -0.222 -0.099 5      

Constant            6.558 

C: PLS regression statistics Values  

n 20 

r 0.937 

s 0.363 

F 61.307 

FIT 5.108 

LOF 0.175 

AIC 0.178 

Q
2

LOO 0.828 

Q
2

L5O 0.808 

r
2

Test 0.538 
a
Regression coefficient of PLS factor and its standard error. 

b
Coefficients of MLR-like PLS 

equation in terms of descriptors for their original values;
c
f.c. is fraction contribution of 

regression coefficient, computed from the normalized regression coefficients obtained from the 

autoscaled (zero mean and unit s.d.) data. 

 
 For the sake of comparison, the plot showing goodness of fit between 

observed and calculated activities (through PLS analysis) for the training and 

test set compounds is also given in Figure 5.5. The fraction contribution of 

normalized regression coefficients of these descriptors to the activity is shown 

in Figure 5.6.  
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Figure 5.6: Plot of fraction contribution of MLR-like PLS coefficients 

(normalized) against 13 CP-MLR identified descriptors (Table 5.8) associated 

with GPR119 agonistic activity of indole-based derivatives.  

2.2.1.2. APPLICABILITY DOMAIN (AD) 

 On analyzing the model AD in the Williams plot, shown in Figure 5.7, 

of the model based on the whole dataset (Table 5.9), it has appeared that one 

compound (S. No. 22, Table 5.5) was identified as an obvious outlier for the 

GPR119 agonistic activity if the limit of normal values for the Y outliers 

(response outliers) was set as 2 (standard deviation) units. An outlier to a 

QSAR is identified normally by having a large standard residual activity and 

can indicate the limits of applicability of QSAR models. Two compounds, 

listed in Table 5.5 at S. No. 7 and 24 found to have leverage (h) values greater 

than the threshold leverage (h*) suggesting these compounds as chemically 

influential compound.  

 For both the training-set and test-set, the suggested model matches the 

high quality parameters with good fitting power and the capability of assessing 

external data. Furthermore, all of the compounds were within the applicability 

domain of the proposed model and were evaluated correctly. 
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Figure 5.7: Williams plot for the training-set and test- set compounds for 

GPR119 agonistic activity. The horizontal dotted line refers to the residual 

limit (±2×standard deviation) and the vertical dotted line represents threshold 

leverage h* (= 0.580). 

Table 5.9: Models derived for the whole data set (n = 26) for the GPR119 

agonistic activity in descriptors identified through CP-MLR.  

 

Model r s F Eq. 

pEC50 = 6.237 + 1.680(0.679)BELm5  

+ 4.123(0.813)GGI8 – 3.263(0.841)ATS7p  

– 1.088(0.527)H-050 

0.786 0.692 8.484 (5.8a) 

pEC50 = 7.855 + 2.836(0.567)GGI8  

– 2.118(0.446)ATS7e – 1.255(0.377)C-008  

– 1.421(0.452)H-050 

0.847 0.595 13.345 (5.9a) 

pEC50 = 6.398 + 2.663(0.694)GGI8  

–2.844(0.660)GATS1e +1.794(0.699)GATS4e  

+ 0.628(0.425)C-029 

0.765 0.721 7.414 (5.10a) 

pEC50 = 8.523 + 2.745(0.698)LP1  

–1.938(0.432)BELp8 – 2.882(0.536)MATS7m  

– 2.472(1.116)Hy 

0.829 0.625 11.600 (5.11a) 
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2.2.2. CONCLUSIONS 

 QSAR study has been carried out on the GPR119 agonistic activity of 

indole-based derivatives in 0D- to 2D-Dragon descriptors. The derived QSAR 

models have revealed that the atomic Sandersons electronegativities weighted 

and charge accounting descriptors ATS7e, GATS1e, GATS4e and GGI8, 

molecular mass weighted descriptors, MATS7m and BELm5, and atomic 

polarizabilities weighted descriptors ATS7p and BELp8, and molecular 

topology accounting feature Lovasz-Pelikan index (LP1) played a pivotal role 

in rationalization of GPR119 agonistic activity of titled compounds. 

Hydrophilic factor (Hy) and certain structural fragments, such as CHR2X (C-

008), R--CX--X (C-008) and H attached to heteroatom (H-050) are also 

predominant to explain GPR119 agonistic actions of indole-based derivatives. 

PLS analysis has also corroborated the dominance of CP-MLR identified 

descriptors. Applicability domain analysis revealed that the suggested model 

matches the high quality parameters with good fitting power and the capability 

of assessing external data and all of the compounds was within the 

applicability domain of the proposed model and were evaluated correctly. 
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ABSTRACT 

The inhibition activity of (2S)-cyanopyrrolidine analogues for dipeptidyl peptidase IV has been 

quantitatively analyzed in terms of topological 0D-, 1D- and 2D-descriptors based on 

molecular graph theory. Statistically sound models have been obtained between the activity 

and various DRAGON descriptors through combinatorial protocol-multiple linear regression 

(CP-MLR) computational procedure. Amongst the large number of such derived models, the 

most significant ones have only been discussed to draw meaningful conclusions. Additionally 

the inhibition activity for DPP8 enzyme, reported for a limited number of such congeners, has 

also been correlated with such descriptors. From the final statistically significant models, it 

appeared that the mode of actions of titled compounds were different for DPP IV and DPP8 

enzyme systems. Applicability domain analysis carried out for DPP IV inhibitors revealed that 

the suggested model matches the high quality parameters with good fitting power and the 

capability of assessing external data and all of the compounds was within the applicability 

domain of the proposed model and were evaluated correctly.  

Keywords: QSAR, DPP IV inhibitors, Combinatorial protocol in multiple linear regression 

(CP-MLR) analysis, Dragon descriptors, (2S)-cyanopyrrolidine analogues. 
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INTRODUCTION 

The most potent known insulinotropic hormone is glucagon-like peptide-1 (GLP-1) 1-3. This 

hormone, containing 30 amino acids, is produced by L-cells of the intestinal mucosa that results 

from tissue specific processing of the proglucagon gene 4,5. The stimulation of insulin secretion, 

inhibition of glucagons release 6-9 and slow down of gastric emptying 10-13 is due to the active 

form of GLP-1. These beneficial effects are helpful in controlling the glucose homeostasis in 

patients with type 2 diabetes 14-16. However, GLP-1 is rapidly degraded by plasma DPP-IV and 

is lacking of oral activity; its use as a therapeutic agent is, therefore, restricted. In view of this 

a small molecule, as the inhibitor of DPP-IV, may extend the duration of action of GLP-I and 

result in the beneficial effects of this hormone for a long period of time.  Through human 

clinical trials, it was shown that inhibition of DPP-IV may improve glucose tolerance in 

diabetic patients and healthy volunteers and leads to a new strategy for the treatment of type 2 

diabetes 17-21. DPP-IV is a serine protease, able to cleave the N-terminal dipeptide having 

preference for L-proline or L-alanine at the penultimate position 22-25. A large number of DPP-

IV inhibitors resemble the P2-P1 dipeptidyl substrate cleavage product. The simplest inhibitors 

are the compounds which are not having a carbonyl functionality of the proline residue, e.g., 

aminoacyl pyrrolidines and thiazolidines, possessing moderate inhibition activity for DPP-IV. 

Replacement of hydrogen with an electrophilic nitrile group at the 2-position of the pyrrolidine, 

in some compounds, elicited a 1000-fold increase in potency compared to the unsubstituted 

pyrrolidines 26.   

One of the potent and stable representatives of the nitrile class is cyclohexylglycine-(2S)-

cyanopyrrolidine, having a Ki value of 1.4 nM and an excellent chemical stability t1/2 ~ 48 h at 

pH 7.427. Another class, similar to proline inhibitors, was synthesized with diverse N-

substituted glycines in the P2 site 17. In this class, the side chain was moved from the α-carbon 

to the terminal nitrogen, led to two potent derivatives which have showed greater efficacy in 

clinical trial 28.  From this study, it was concluded that (2S)-cyanopyrrolidine derivatives with 

N-substituted glycine in the P2 site are more selective for DPP-IV than α-carbon-substituted 

glycine. An interesting study has recently been reported to develop a new pharmacophore in 

the P2 site with N-substituted glycine 29. Initially, the P2 site amine extension was designed 

using β-alanine as building block and it was coupled the C-terminal with various substituted 

amines to generate a novel pharmacophore in the P2 site. Then, the N-terminal of the β-alanine 

derivative was combined with the P1 site α-bromoacetyl (2S)-cyanopyrrolidide to design 2-[3-

[[2-[(2S)-2-cyano-1-pyrrolidinyl]-2-oxoethyl]amino]-1-oxopropyl]-based DPP-IV inhibitors. 

The structure-activity relationships of several series (I–III) of these DPP-IV inhibitors were 

explored to discover the potent and selective DPP-IV inhibitors. Series I, II, and III, being N-
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substituted glycine derivatives include, respectively, the bicyclic ring system, monocyclic 

piperazine ring, and phenylalkyl groups. These compounds were tested for inhibition of DPP-

IV, DPP8, and DPP-II. The activity was evaluated in terms of the concentration of a compound 

required to bring out 50% inhibition of the enzyme concerned. The aim of present 

communication is to establish the quantitative relationships between the reported activities and 

molecular descriptors unfolding the substitutional changes in titled compounds.  

MATERIALS AND METHOD 

Data set  

The reported twenty five (2S)-cyanopyrrolidine analogues, belonging to series I, II, and III  are 

considered to formulate the data set for present study 29. The structural variations and the 

activity values, expressed as IC50(nM), of the reported analogues are given in Table 1.  Since 

the activity variation for DPP-II is very small, therefore, inhibition profiles for DPP-IV and 

DPP8 have only been considered for quantitative analysis.  

For the purpose of modeling study, the data set has been divided into training and test sets. One 

fifth of the compounds, from this data set, have been included in the test set for the validation 

of derived models while remaining compounds were used to derive the model correlating 

biological activity with descriptors unfolding molecular structures. The test-set, containing 5 

compounds out of the 25 active ones, was generated in the SYSTAT 30 using the single linkage 

hierarchical cluster procedure involving the Euclidean distances of the activity. The selection 

of test set from the cluster tree was done in such a way to keep the test compounds at a 

maximum possible distance from each other. In this way, the identified test set will further 

ensure the statistical significance and reasonable predictability of derived models. As the leave-

one-out (LOO) procedure has been applied to each model, therefore, corresponding to test set 

the derived model would be validated both internally and externally. The training and test set 

compounds are listed in Table 1.  

Table 1: General structures and structural variations of (2S)-Cyanopyrrolidine 

analogues. 
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1.  0  1  H  H  H    3236 4169 

2.  1  1  H  H  H    116 3583 

3.  1  1  H  H  6,7-diOMe    651 3340 

4.b  1  1  H  H  6-F    83 1700 

5.  1  0  H  H  H    132 2121 

6.  2  1  H  H  H    428 1407 

7.  1  1  CH3  H  H    54 5346 

8.b  1  1  i-Pr  H  H    811 41859 

9.  1  1  CH3  CH3 H    49 >100000 

10.  1  1  CH3  CH3  6-F    30 >100000 

11.  1  1  CH3  CH3  6,8-F2    22 >100000 

12.  1  0  CH3  CH3 H    15 >100000 

13.  1   H  H  CO(3,5-F2C6H3)    676 202 

14.  1   H  H SO2C6H4-4-NHCOCH3    418 3416 

15.  1   H  H  nicotinonitrile    629 2000 

16.  1   H  H  benzothiazole    527 2117 

17. 1  0  H  H  H  H  H  452 10744 

18. 1  0  H  H  4-NO2  H  H  317 2387 

19.b 1  0  H  H  H  H  ethylc  447 21961 

20. 1  0  H  H  3,5-F2  H  H  369 5532 

21. 1  0  H  H  H  H  i-Prc 784 12847 

22.b 1  0  H  H  H  CH3  CH3  119 8338 

23. 1  0  CH3  CH3  H  CH3  CH3  1108 >100000 

24. 1  1  H  H  H  H  H  564 2592 

25.b        298 855 
aIC50 represents the concentration of a compound required to bring out 50% inhibition of DPP-

IV and DPP8, taken from ref 29; bcompound of test set; cThe stereochemistry at the benzylic 

carbon is not defined (mixture of diastereomers). 

Theoretical molecular descriptors 

The structures of the compounds were drawn in 2D ChemDraw 31, converted into 3D modules 

and subjected to energy minimization in the MOPAC using the AM1 procedure for closed shell 

system to ensure a well defined conformer relationship among the compounds under 

investigation. DRAGON software 32 was then used to compute the molecular descriptors of 

titled compounds. This software offers several hundreds of descriptors corresponding to 0D-, 

1D-, and 2D-descriptor modules. The modules include ten different classes, namely, the 

constitutional (CONST), the topological (TOPO), the molecular walk counts (MWC), the 

BCUT descriptors (BCUT), the Galvez topological charge indices (GALVEZ), the 2D-

autocorrelations (2D-AUTO), the functional groups (FUNC), the atom-centered fragments 

(ACF), the empirical descriptors (EMP), and the properties describing descriptors (PROP). For 

each of these classes the DRAGON software computes a large number of descriptors which 

are characteristic to the molecules under multi-descriptor environment. A total number of 484 

descriptors, belonging to above classes, have been computed to generate most appropriate 

models describing the biological activity. The combinatorial protocol in multiple linear 

regression (CP-MLR) 33 method, discussed below, has been used further for developing 
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statistical significant models divulging quantitative structure-activity relationship (QSAR). 

Before the application of CP-MLR procedure, all those descriptors which are intercorrelated 

beyond 0.90 and showing a correlation of less than 0.1 with the biological endpoints (descriptor 

vs. activity, r < 0.1) were excluded. This has reduced the total dataset of the compounds from 

484 to 90 and 84 descriptors as relevant ones for the DPP-IV and DPP8 inhibitory activity, 

respectively. The descriptors, in all above models, have been scaled between the intervals 0 to 

1 34 to ensure that a descriptor will not dominate simply because it has larger or smaller pre-

scaled value compared to the other descriptors. In this way, the scaled descriptors would have 

equal potential to influence the QSAR models. 

Model development 

The CP-MLR software is developed for the selection of most appropriate descriptors from a 

pool, which are subsequently used to develop statistical significant models in a systematic 

manner. Its procedural aspects and implementation are discussed in some of our publications 

35-40. The thrust of this software is implicated mainly on its embedded “filters” which have been 

interfaced with multiple linear regression (MLR) to extract diverse structure-activity models, 

each having unique combination of descriptors from the dataset under investigation. In this 

procedure, the contents and number of variables to be evaluated are mixed according to the 

predefined confines and the ‘filters’ are significance evaluators of the variables in regression 

at different stages of model development. Of these, filter-1 is set in terms of inter-parameter 

correlation cutoff criteria for variables to stay as a subset (filter-1, default value 0.3 and upper 

limit ≤ 0.79). In this, if two variables are correlated higher than a predefined cutoff value the 

respective variable combination is forbidden and will be rejected. The second filter is in terms 

of t-values of regression coefficients of variables associated with a subset (filter-2, default 

value 2.0). Here, if the ratio of regression coefficient and associated standard error of any 

variable is less than a predefined cutoff value then the variable combination will be rejected. 

Since successive additions of variables to multiple regression equation will increase successive 

multiple correlation coefficient (r) values, square-root of adjusted multiple correlation 

coefficient of regression equation, r-bar, has been used to compare the internal explanatory 

power of models with different number of variables. Accordingly, a filter has been set in terms 

of predefined threshold level of r-bar (filter-3, default value 0.79) to decide the variables’ 

‘merit’ in the model formation. Finally, to exclude false or artificial correlations, the external 

consistency of the variables of the model have been addressed in terms of cross-validated Q2 

criteria from the leave-one-out (LOO) cross-validation procedure as default option (filter-4, 

default threshold value 0.3 ≤ Q2 ≤ 1.0). All these filters make the variable selection process 

efficient and lead to unique solution. In order to collect the descriptors with higher information 

content and explanatory power, the threshold of filter-3 may be incremented successively with 
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increasing number of descriptors (per equation) by considering the r-bar value of the preceding 

optimum model as the new threshold for next generation.  

Model validation 

The subdivision of data set into training set and test set have been used, respectively, for model 

development and external prediction. Goodness of fit of the models was assessed by examining 

the multiple correlation coefficient (r), the standard deviation (s) and the F-ratio between the 

variances of calculated and observed activities (F). The internal validation of derived model 

was ascertained through the cross-validated index, Q2, from leave-one-out (Q2
LOO) and leave-

five-out (Q2
L5O) procedures. The LOO method creates a number of modified data sets by taking 

away one compound from the parent data set in such a way that each observation has been 

removed once only. Then one model is developed for each reduced data set, and the response 

values of the deleted observations are predicted from these models.  

The external validation or predictive power of derived model is based on test set compounds. 

The index r2
Test, representing the squared correlation coefficient between the observed and 

predicted data of the test-set, has been used to infer the same. A value greater than 0.5 of r2
Test 

suggests that the model obtained from training set has a reliable predictive power.  

Y-randomization  

Chance correlations, if any, associated with the CP-MLR models were explored through 

randomization test 41,42 by repeated scrambling of the biological response. The data sets with 

scrambled response vector have been reassessed by multiple regression analysis (MRA). The 

resulting regression equations, if any, with correlation coefficients better than or equal to the 

one corresponding to the unscrambled response data were counted. Every model has been 

subjected to 100 such simulation runs. This has been used as a measure to express the percent 

chance correlation of the model under scrutiny.  

Applicability domain 

The utility of a QSAR model is based on its accurate predictive ability for new congeners. A 

model is valid only within its training domain, and new compounds must be assessed as 

belonging to this domain before the model is applied. The applicability domain is assessed by 

the leverage values for each compound 43,44. A Williams plot (the plot of standardized residuals 

versus leverage values (h) can then be used for an immediate and simple graphical detection of 

both the response outliers (Y outliers) and structurally influential chemicals (X outliers) in the 

model. In this plot, the applicability domain is established inside a squared area within ± 

β.(standard deviations) and a leverage threshold h*. The threshold h* is generally fixed at 

3(k+1)/n (n is the number of compounds in the training-set and k is the number of independent 

descriptors of the model) whereas β = 2 or 3. Prediction must be considered unreliable for 

compounds with a high leverage value (h > h*). On the other hand, when the leverage value of 
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a compound is lower than the threshold value, the probability of agreement between predicted 

and observed values is as high as that for the training set compounds. 

RESULTS AND DISCUSSION 

Qsar results 

Initially, the DPP-IV inhibition activity of titled compounds was investigated with a variety of 

0D-, 1D- and 2D-descriptors obtained from DRAGON software. For the development of 

QSAR models, 20 compounds were considered in training set while 05 (one-fifth of the total) 

compounds were included in test set for external validation of derived significant models.  

Though each individual descriptor class is enriched with information corresponding to the 

activity, different descriptors classes together have led to the models with optimum explained 

variance. These models were identified in CP-MLR by successively incrementing the filter-3 

with increasing number of descriptors (per equation). For this the optimum r-bar value of the 

preceding level model has been used as the new threshold of filter-3 for the next generation.   

The models, in three parameters of the descriptor pool of 90 descriptors, emerged in CP-MLR 

for the DPP-IV inhibition actions are given in Table 2 as Equations (i) to (vi). The signs of the 

regression coefficients have indicated the direction of influence of explanatory variables in 

above models. The positive regression coefficient associated to a descriptor will augment the 

activity profile of a compound while the negative coefficient will cause detrimental effect to it. 

The maximum number of descriptors, participated in these models ATS8p, GATS8p, GATS7e, 

MATS3e and MATS8e, belong to 2D-autocorrelations (2D-AUTO) class. The 2D-AUTO 

descriptors, ATSke, GATSke and MATSke have their origin in autocorrelation of topological 

structure of Broto-Moreau, of Moran and of Geary, respectively. The computation of these 

descriptors involves the summation of different autocorrelation functions corresponding to the 

different fragment lengths and lead to different autocorrelation vectors corresponding to the 

lengths of the structural fragments. Also a weighting component in terms of a physicochemical 

property has been embedded in these descriptors. As a result, these descriptors address the 

topology of the structure or parts thereof in association with a selected physicochemical 

property. In these descriptors’ nomenclature, the penultimate character, a number, indicates the 

number of consecutively connected edges considered in its computation and is called as the 

autocorrelation vector of lag k (corresponding to the number of edges in the unit fragment). 

The very last character of the descriptor’s nomenclature indicates the physicochemical property 

considered in the weighting component – m for atomic mass, e for atomic Sanderson 

electronegativity and p for atomic polarizability - for its computation. 

Table 2: CP-MLR modelsa derived in three parameters for the DPP-IV inhibition activity.  

Model r s F q2
LOO r2

Test Eq. 
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pIC50 = 5.090 + 1.709(0.280)JGI4 

– 1.150(0.331)ATS8p + 2.074(0.297)GATS8p 

0.934 0.242 36.897 0.806 0.279 (i) 

pIC50 = 5.538 + 0.599(0.248)BELm1 

– 0.902(0.364)GATS7e + 1.784(0.358)GATS8p 

0.854 0.353 14.465 0.615 0.331 (ii) 

pIC50 = 7.174 – 1.493(0.444)Uindex 

+ 1.200(0.347)JGI4 – 1.492(0.442)MATS3e 

0.850 0.358 13.927 0.533 0.250 (iii) 

pIC50 = 5.939 – 0.976(0.400)GATS7e 

+ 1.442(0.410)GATS8p + 0.668(0.325)C-002 

0.842 0.367 13.021 0.562 0.331 (iv) 

pIC50 = 6.094 – 0.663(0.327)RBN 

– 0.725(0.361)GATS7e + 1.848(0.374)GATS8p 

0.841 0.368 12.913 0.511 0.191 (v) 

pIC50 = 5.651 + 1.109(0.418)JGI4 

+ 1.124(0.524)MATS8e – 0.806(0.400)GATS7e 

0.804 0.404 9.812 0.521 0.233 (vi) 

aThe models, in three parameters, emerged from CP-MLR protocol with filter-1 as 0.79, filter-

2 as 2.0, filter-3 as 0.5 and filter-4 as 0.3 ≤ q2 ≤1.0 with a training set of 20 compounds. 

Desciptors, GATS8p and MATS8e both added positively to the inhibitory activity whereas 

ATS8p, GATS7e and MATS3e contributed negatively to the activity advocating that higher 

values of descriptors GATS8p and MATS8e and lower values of descriptors ATS8p, GATS7e 

and MATS3e would be beneficiary to the activity. Constitutional class descriptors are 

dimensionless or 0D descriptors and are independent from molecular connectivity and 

conformations. The appeared constitutional class descriptor RBN (number of rotatable bonds) 

favors the least preference of rotatable bonds.      

Descriptor Uindex, corresponds to Balaban U-index, is a topological class descriptor. 

Topological class descriptors are based on a graph representation of the molecule and are 

numerical quantifiers of molecular topology obtained by the application of algebraic operators 

to matrices representing molecular graphs and whose values are independent of vertex 

numbering or labeling. They can be sensitive to one or more structural features of the molecules 

such as size, shape, symmetry, branching and cyclicity and can also encode chemical 

information concering atom type and bond multiplicity. The negative contribution of descriptor 

Uindex suggested that a lower value of it would be supportive to the activity. The other 

participated descriptors are JGI4 (from the Galvez topological charge indices), BELm1 (from 

the modified Burden eigenvalues class, BCUT descriptors) and C-002 (from the atom-centered 

fragments). GALVEZ class descriptors are 2D-descriptors representing the first 10 eigenvalues 

of corrected adjacency matrix. BCUT descriptors are also 2D-descriptors representing positive 

and negative eigenvalues of the adjacency matrix weighting the diagonal elements and atoms. 

Atom centered fragments (ACF) are molecular descriptors based on the counting of 120 atom 

centered fragments, as defined by Ghose-Crippen. The 4th order mean Galvez topological 

charge index (JGI4), the lowest eigenvalue n.1 of Burden matrix/ weighted by atomic masses 

(BELm1) and CH2R2 type atom centered fragment (C-002) correlated positively to the activity 

suggested that a higher value of these will augment the activity. However, for all the models 

mentioned in Table 2 the r2
Test values (<0.5) are inferior to a specified value.   
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Considering the number of observation in the data set, models with up to four descriptors were 

explored. A total number of seven such models, sharing 18 descriptors among them, have been 

obtained through CP-MLR. The shared 18 descriptors along with their brief description, 

average regression coefficients and total incidences are given in Table 3. Following are the 

selected four-descriptor models, obtained from CP-MLR, for the DPP-IV inhibitory activity.  

Table 3. Identified descriptorsa along with their physical meaning, average regression 

coefficient and incidenceb, in modeling the DPP-IV inhibitory activity.  

S. 

No. 

Descriptor  Descriptor class Physical meaning Average 

regression 

coefficient 

(incidence) 

1 RBN Constitutional  Number of rotatable bonds -1.302(1) 

2 PJI2 Topological 2D Petitijean shape index 0.360(1) 

3 BIC3 Topological  Bond information content 

(neighborhood symmetry of 3 

order) 

3.300(2) 

4 BIC5 Topological  Bond information content 

(neighborhood symmetry of 5 

order) 

-2.310(1) 

5 SRW09 Molecular walk 

counts 

Self- returning walk count of 

order 09 

1.341(1) 

6 BELm1 BCUT  Lowest eigenvalue n.1 of Burden 

matrix/ weighted by atomic 

masses  

0.713(1) 

7 BEHv1 BCUT  Highest eigenvalue n.1 of Burden 

matrix/ weighted by atomic van 

der Waals  volumes 

0.821(1) 

8 BELe1 BCUT  lowest eigenvalue n.1 of Burden 

matrix/ weighted by atomic 

Sanderson electro negativities 

0.655(1) 

9 BELp2 BCUT  lowest eigenvalue n.2 of Burden 

matrix/ weighted by atomic 

polarizabilities 

-0.675(1) 

10 JGI4 Galvez topological 

charge indices 

Mean topological charge index 

of order 4 

1.993(1) 

11 ATS8p 2D autocorrelations Broto-Moreau autocorrelation of 

a topological structure - lag8/ 

weighted by atomic 

polarizabilities 

-0.992(2) 

12 GATS7e 2D autocorrelations Geary autocorrelation of lag-7/ 

weighted by atomic Sanderson 

electro negativities 

-0.901(4) 

13 GATS8p 2D autocorrelations Moran autocorrelation of lag-8/ 

weighted by atomic 

polarizabilities 

2.020(5) 

14 C-024 Atom-centred 

fragments 

R--CH--R 0.405(1) 

15 C-040 Atom-centred 

fragments 

R-C(=X)-X/ R-C#X/X-=C=X 0.853(1) 
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16 H-052 Atom-centred 

fragments 

H attached to C0(sp3) with 1X 

attached to next C 

2.214(2) 

17 MR Properties  Ghose-Crippen molecular 

refractivity 

-1.058(1) 

18 MLOGP Properties  Moriguchi octanol-water 

partition coefficient (logP) 

1.331(1) 

aThe descriptors are identified from the four parameter models, emerged from CP-MLR 

protocol with filter-1 as 0.79, filter-2 as 2.0, filter-3 as 0.809 (r-bar of the three parameter model 

having the highest r2
Test ), and filter-4 as 0.3 ≤ q2 ≤1.0 with a training set of 20 compounds. 

bThe average regression coefficient of the descriptor corresponding to all models and the total 

number of its incidence. The arithmetic sign of the coefficient represents the actual sign of the 

regression coefficient in the models. 

pIC50 =4.722+1.993(0.276) JGI4–1.295(0.300) ATS8p+2.163(0.265) GATS8p+ 

0.405(0.173)C-024 

n = 20, r = 0.952, s = 0.214, F = 36.718, q2
LOO = 0.832, q2

L5O = 0.805, r2
Test= 0.576   (1) 

pIC50=5.165–0.688(0.336) ATS8p–0.690(0.267) GATS7e+2.112(0.344) GATS8p+ 

1.331(0.288) MLOGP 

n = 20, r = 0.921, s = 0.273, F = 21.086, q2
LOO = 0.715, q2

L5O = 0.704, r2
Test= 0.730   (2) 

pIC50 = 5.910 – 1.302(0.282) RBN + 3.530(0.486) BIC3 – 2.310(0.364) BIC5 + 1.897(0.247) 

H-052 

n = 20, r = 0.920, s = 0.274, F = 20.846, q2
LOO = 0.561, q2

L5O = 0.713, r2
Test= 0.801   (3) 

pIC50 = 3.727 +3.070(0.467) BIC3+1.341(0.226) SRW09+0.853(0.243) C-040+ 2.530(0.335) 

H-052 

n = 20, r = 0.907, s = 0.295, F = 17.516, q2
LOO = 0.558, q2

L5O = 0.582, r2
Test= 0.543   (4) 

Where n and F represent respectively the number of data points and the F-ratio between the 

variances of calculated and observed activities. The data within the parentheses are the standard 

errors associated with regression coefficients. In all above equations, the F-values remained 

significant at 99% level. The indices q2
LOO and q2

L5O (> 0.5) have accounted for their internal 

robustness. For all above models the r2
Test values, obtained greater than 0.5, specified that the 

selected test-set is fully accountable for their external validation.  

These models are able to estimate up to 90.73 percent of variance in observed activity of the 

compounds. The derived statistical parameters of these four models have shown that these 

models are significant. These models were, therefore, used to calculate the activity profiles of 

all the compounds and are included in Table 4 for the sake of comparison with observed ones. 

A close agreement between them has been observed. Additionally, the graphical display, 

showing the variation of observed versus calculated activities is given in Figure 1 to ensure the 

goodness of fit for each of these four models. 
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Table 4: Observed, calculated and predicted DPP-IV inhibition activities of (2S)-

Cyanopyrrolidine analogues.  

 Cpd. pIC50
a 

Obsdb. Eq. (1) Eq. (2) Eq. (3) Eq. (4) 

Calc. Predc. Calc. 2 Predc. Calc.3 Predc. Calc. 4 Predc. 

1 5.49 5.76 5.90 5.37 5.31 5.75 5.98 5.73 5.79 

2 6.94 6.78 6.76 6.75 6.72 6.59 6.52 6.64 6.61 

3 6.19 6.42 6.53 6.04 6.00 5.84 5.76 5.86 5.80 

4d 7.08 7.00 -d 6.99 -d 7.26 -d 7.22 -d 

5 6.88 6.68 6.65 6.56 6.50 7.03 7.11 6.84 6.82 

6 6.37 6.58 6.60 6.29 6.18 6.40 6.41 6.78 6.82 

7 7.27 7.09 7.07 7.06 7.04 6.93 6.85 7.27 7.27 

8d 6.09 6.42 -d 6.45 -d 6.26 -d 6.32 -d 

9 7.31 7.33 7.34 7.21 7.19 7.13 7.09 7.10 7.06 

10 7.52 7.46 7.44 7.42 7.40 7.70 7.77 7.60 7.63 

11 7.66 7.44 7.34 7.52 7.47 7.70 7.72 7.60 7.58 

12 7.82 7.98 8.07 7.72 7.68 7.45 7.18 7.33 6.99 

13 6.17 6.20 6.20 6.23 6.24 6.15 6.14 5.88 5.71 

14 6.38 6.72 6.80 6.36 6.34 6.15 6.06 6.57 6.68 

15 6.20 6.11 5.99 6.25 6.28 6.21 6.21 6.30 6.34 

16 6.28 5.88 5.78 6.31 6.32 6.27 6.27 6.81 7.10 

17 6.34 6.33 6.32 6.44 6.45 6.56 6.59 6.27 6.26 

18 6.50 6.47 6.47 6.42 6.41 6.67 6.71 6.44 6.43 

19d 6.35 6.00 -d 6.24 -d 6.14 -d 6.42 -d 

20 6.43 6.56 6.59 6.93 7.16 6.88 6.99 6.55 6.57 

21 6.11 5.97 5.88 5.96 5.88 6.06 6.05 5.87 5.83 

22d 6.92 6.71 -d 6.76 -d 6.97 -d 6.62 -d 

23 5.96 6.07 6.20 6.51 6.80 6.32 7.14 6.26 6.87 

24 6.25 6.24 6.24 6.75 6.84 6.24 6.23 6.36 6.37 

25d 6.53 6.51 -d 6.60 -d 6.68 -d 6.16 -d 
aIC50 represents the concentration of a compound required to bring out 50% inhibition of DPP-

IV and the same is expressed as pIC50 on molar basis; bTaken from ref. 29; cLeave-one-out 

(LOO) procedure; dCompound included in test set.  
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Figure 1: Plots showing variations of observed versus calculated pIC50 values of training 

and test set compounds. 

The newly emerged descriptors C-024, H-052 and C-040 in these models are atom centered 

fragments and shown positive correlation to the activity. Therefore, presence of R--CH--R 

(descriptor C-024), H attached to C0(sp3) with 1X attached to next C (descriptor H-052) and 

R-C(=X)-X/R-C#X/X-=C=X (descriptor C-040) type atom centered fragments in a molecular 

structure would enhance the activity. Topological class descriptor BIC3 (bond information 

content of 3rd order neighborhood symmetry) contributed positively whereas BIC5 (bond 

information content of 5th order neighborhood symmetry) contributed negatively to the activity 

revealed that a higher value of descriptor BIC3 and a lower value of descriptor BIC5 would be 

beneficiary to the activity. Descriptor SRW09 represents self- returning walk count of order 09 

is from molecular walk counts class. Molecular walk counts are 2D-descriptors representing 

self-returning walk counts of different lengths. The descriptor MLOGP is from properties class   

representing Moriguchi octanol-water partition coefficient (logP). It is evinced from the models 

that higher values of both of these descriptors (SRW09 and MLOGP) would augment the 

activity. 

CP-MLR analysis has also been performed for the DPP-8 inhibitory activity with the descriptor 

pool of 84 descriptors with the same test which was used for the DPP-IV inhibitory activity. 

All the emerged four models in three descriptors are given below through Equations (5) to (8).  

pIC50 = 5.283 + 0.863(0.234)MW – 0.745(0.207)X1Av + 0.544(0.123)PJI2 

n = 15, r = 0.885, s = 0.218, F = 13.264, q2
LOO = 0.552, q2

L5O = 0.578, r2
Test= 0.683  (5) 

pIC50 = 5.419 – 0.536(0.210)X1Av + 0.533(0.129)PJI2 + 0.497(0.148)C-040 

n = 15, r = 0.871, s = 0.229, F = 11.623, q2
LOO = 0.507, q2

L5O = 0.612, r2
Test= 0.761   (6) 

pIC50 = 5.300 – 0.778(0.223)X1Av + 0.575(0.130)PJI2 + 0.771(0.231)BEHm8 

n = 15, r = 0.871, s = 0.230, F = 11.525, q2
LOO = 0.506, q2

L5O = 0.726, r2
Test= 0.646   (7) 

pIC50 = 6.037 + 0.609(0.135)PJI2 – 0.601(0.254)GATS1e – 0.691(0.205)C-024 

n = 15, r = 0.860, s = 0.238, F = 10.493, q2
LOO = 0.533, q2

L5O = 0.528, r2
Test= 0.511   (8) 
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The derived statistical parameters of these four models have shown that these models are 

significant and are able to explain up to 78.34 percent of variance in observed DPP8 activity 

of the compounds. A close agreement between observed and calculated activity has been 

observed and is given in Table 5 for the sake of comparison. The participated descriptors in 

above models suggested that higher values of molecular weight (MW, constitutional class 

descriptor), 2D- Petitijean shape index (PJI2, topological class), highest eigenvalue n.8 of 

Burden matrix weighted by atomic masses (BEHm8, BCUT descriptor) and presence of R-

C(=X)-X/R-C#X/X-=C=X type atom centered fragments (descriptor C-040, atom centered 

fragment descriptor) would be beneficiary to DPP8 inhibitory activity. Another emerged 

topological class descriptor X1Av (average valence connectivity index, chi-1), 2D-AUTO class 

descriptor GATS1e (Geary autocorrelation of lag-1/weighted by atomic Sanderson electro 

negativities) advocated that a lower value of these descriptors and absence of R--CH--R type 

fragment (descriptor C-024)   would augment the activity.  

Table 5: Observed, calculated and predicted DPP-8 inhibition activities of (2S)-

Cyanopyrrolidine analogues.  

Cpd. pIC50
a 

Obsdb. Eq. (5) Eq. (6) Eq. (7) Eq. (8) 

Calc. Predc. Calc. 2 Predc. Calc. 3 Predc. Calc. 4 Predc. 

1 5.38 5.72 5.82 5.79 5.89 5.64 5.74 5.81 5.89 

2 5.45 5.11 5.04 5.16 5.11 5.20 5.16 5.20 5.16 

3 5.48 5.60 5.63 5.34 5.32 5.69 5.75 5.50 5.53 

4d 5.77 5.88 -d 5.80 -d 6.01 -d 6.20 -d 

5 5.67 5.72 5.73 5.79 5.82 5.90 5.94 5.81 5.84 

6 5.85 5.61 5.55 5.62 5.56 5.79 5.77 5.81 5.81 

7 5.27 5.12 5.09 5.13 5.10 5.23 5.23 5.20 5.19 

8d 4.38 5.11 -d 5.02 -d 5.17 -d 5.20 -d 

9 -e -e -e -e -e -e -e -e -e 

10 -e -e -e -e -e -e -e -e -e 

11 -e -e -e -e -e -e -e -e -e 

12 -e -e -e -e -e -e -e -e -e 

13 6.69 6.40 6.11 6.43 6.11 6.29 6.02 6.21 5.97 

14 5.47 5.55 5.70 5.53 5.62 5.45 5.43 5.55 5.56 

15 5.7 5.66 5.66 5.91 6.04 5.64 5.63 5.67 5.65 

16 5.67 5.87 5.95 5.57 5.54 5.81 5.85 5.69 5.69 

17 4.97 5.01 5.02 5.18 5.21 4.99 5.00 4.88 4.84 

18 5.62 5.61 5.61 5.48 5.43 5.41 5.33 5.65 5.67 

19d 4.66 4.92 -d 5.02 -d 4.84 -d 4.89 -d 

20 5.26 5.49 5.57 5.41 5.46 5.60 5.72 5.58 5.68 

21 4.89 4.97 5.00 5.01 5.05 4.88 4.87 4.89 4.90 

22d 5.08 5.05 -d 5.11 -d 4.90 -d 4.89 -d 

23 -e -e -e -e -e -e -e -e -e 

24 5.59 5.51 5.48 5.63 5.65 5.46 5.39 5.50 5.46 

25d 6.07 5.60 -d 5.79 -d 5.65 -d 5.49 -d 
aIC50 represents the concentration of a compound required to bring out 50% inhibition of DPP-

IV and the same is expressed as pIC50 on molar basis; bTaken from ref. 29; cLeave-one-out 
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(LOO) procedure; dCompound included in test set. eCompound with uncertain activity, not part 

of data set. 

CP-MLR has also been carried out on DPP8 inhibitory activity from the pool of 90 descriptors 

which was used to find rationales for DPP-IV inhibitory activity. The analysis resulted into 10 

models having r2
Test > 0.5 and the highest significant four models are listed in Table 6. These 

are able to estimate up 84.82 percent of variance in observed DPP8 activity of the compounds. 

The newly appeared descriptors in above models are MR (property class descriptor), N-072 

and H-047 (ACF class descriptor), X0Av and X2Av (TOPO class descriptor) and BELp2 

(BCUT descriptor). Tabled Equations reveal that lower values of average valence connectivity 

indices (X0Av and X2Av, chi-0 and chi-2) would be advantageous to enhance the activity. On 

the other hand, a higher lower value of Ghose-Crippen molecular refractivity (MR) and lowest 

eigenvalue n.2 of Burden matrix weighted by atomic polarizabilities are incremental to the 

activity. Counts for certain structural fragments, H attached to C1(sp3) /C0(sp2) (descriptor H-

047) and R-CO-N</>N-X=X (descriptor N-072) strongly recommend the presence of such 

structural features favorable to activity. Thus the descriptors identified for rationalizing the 

DPP-IV activity give avenues to rationalize the DPP8 inhibitory activity. From the different 

nature of emerged descriptors in final statistically significant models for DPP IV and DPP8 

inhibition actions, it appeared that the mode of actions of titled compounds were different for 

DPP IV and DPP8 enzyme systems.  

Table 6: Three parameter CP-MLR models for the DPP-8 inhibition activity from the 

descriptor pool of DPP-IV.  

Model r s F q2
LOO r2

Test Eq. 

pIC50 = 5.218 – 0.999(0.193)X2Av + 

0.523(0.103)PJI2 + 1.075(0.230)MR 

0.920 0.182 20.490 0.690 0.545 (vii) 

pIC50 = 5.510 – 0.737(0.203)X2Av + 

0.464(0.118)PJI2 + 0.613(0.161)N-072 

0.896 0.208 14.982 0.590 0.755 (viii) 

pIC50 = 5.405 – 0.865(0.217)X2Av + 

0.411(0.125)PJI2 + 0.702(0.195)BELp2 

0.889 0.214 13.934 0.539 0.516 (ix) 

pIC50 = 5.221 – 1.066(0.276)X0Av + 

0.410(0.125)PJI2 + 0.871(0.231)H-047 

0.888 0.215 13.730 0.562 0.762 (x) 

aThe models, in three parameters, emerged from CP-MLR protocol with filter-1 as 0.79, filter-

2 as 2.0, filter-3 as 0.5 and filter-4 as 0.3 ≤ q2 ≤1.0 with a training set of 15 compounds. 

Applicability domain 

On analyzing the applicability domain (AD) in the Williams plot (Figure 2) of the model based 

on the whole data set (Table 7), none of the compound has been identified as an obvious 

‘outlier’ for the DPP-IV inhibitory activity if the limit of normal values for the Y outliers 

(response outliers) was set as 3×(standard deviation) units. None of the compounds was found 

to have leverage (h) values greater than the threshold leverage (h*). For both the training-set 

and test-set, the suggested model matches the high quality parameters with good fitting power 
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and the capability of assessing external data. Furthermore, all of the compounds were within 

the applicability domain of the proposed model and were evaluated correctly. 

Table 7: Models derived for the whole data set (n = 25) for the DPP-IV inhibitory activity 

in descriptors identified through CP-MLR.  

Model r s F q2
LOO Eq. 

pIC50=4.707+2.088(0.260)JGI4 

1.513(0.230)ATS8p+2.197(0.246)GATS8p+ 0.478(0.158)C-024 

0.942 0.212 39.987 0.815 (1a) 

pIC50=5.216–0.847(0.249)ATS8p–0.805(0.207)GATS7e+ 

2.143(0.298)GATS8p + 1.365(0.254)MLOGP 

0.920 0.249 27.603 0.760 (2a) 

pIC50=5.902–1.229(0.233)RBN+3.431(0.415)BIC3– 

2.257(0.315)BIC5 + 1.866(0.217)H-052 

0.919 0.250 27.370 0.658 (3a) 

pIC50=3.827+2.966(0.412)BIC3+1.301(0.208)SRW09+0.809(0.2

23)C-040+ 2.471(0.305)H-052 

0.895 0.283 20.219 0.582 (4a) 

 

  

 

 

Figure 2. Williams plot for the training-set and test- set for inhibition activity of DPP4 

for the compounds in Table 1. The horizontal dotted line refers to the residual limit 

(±3×standard deviation) and the vertical dotted line represents threshold leverage h* (= 

0.6).   
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CONCLUSION 

This study has provided a rational approach for the development of (2S)-cyanopyrrolidine 

analogues as DPP-IV inhibitors. The descriptors identified in CP-MLR analysis have 

highlighted the role of atomic properties in respective lags of 2D-autocorrelations (ATS8p, 

GATS8p and GATS7e), 4th order mean Galvez topological charge index (JGI4), 3rd and 5th 

order bond information content of neighborhood symmetry (BIC3 and BIC5) and 9th order self 

returning walk-count (SRW09) to explain the biological actions of (2S)-cyanopyrrolidine 

analogues as DPP IV inhibitors. Certain structural features or fragments (RBN, C-024, C-040 

and H-052) in molecular structures in addition to hydrophobicity (MLOGP) of a molecule have 

also shown prevalence to optimize the DPP IV inhibitory activity of titled compounds. 

Applicability domain analysis revealed that the suggested model for DPP IV inhibitory activity 

matches the high quality parameters with good fitting power and the capability of assessing 

external data and all of the compounds was within the applicability domain of the proposed 

model and were evaluated correctly.  
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Abstract 

The DPP4 inhibition activity of imidazolopyrimidine amides has been quantitatively analyzed in terms of chemometric 
descriptors. The statistically validated QSAR models provided rationales to explain the inhibition activity of these 
congeners. The descriptors identified through CP-MLR analysis have highlighted the role of mean electrotopological 
state (Ms), number of double bonds in molecular structure (nDB), 2D Petitijean shape index (PJI2), Moran 
autocorrelation of lag-2/weighted by atomic polarizabilities (MATS2p), Moran autocorrelation of lag-6 and lowest 
eigenvalue n.5 of Burden matrix /weighted by atomic Sanderson electronegativities (MATS6e and BELe5), lowest 
eigenvalue n.3 and highest eigenvalue n.1 of Burden matrix/weighted by atomic van der Waals volumes (BELv3 and 
BEHv1). In addition to these 2nd order mean Galvez topological charge index (JGI2), number of ring tertiary C(sp3) 
(nCrHR) and R--CR--X type structural fragments (C-028) have also shown prevalence to model the inhibitory activity.  

From statistically validated models, positive contribution of descriptors Ms, PJI2, JGI2, MATS2p, BELe5, BELv3 and 
BEHv1 suggested that higher values of these are conducive in improving the DPP4 inhibition activity. On the other hand, 
negative contribution of descriptors nDB, C-028, nCrHR and MATS6e advocated that absence of number of double bonds 
(nDB), R--CR--X type structural fragment (C-028), number of ring tertiary C(sp3) (nCrHR) and lower value of descriptor 
MATS6e would be advantageous. PLS analysis has confirmed the dominance of the CP‐MLR identified descriptors and 
applicability domain analysis revealed the acceptable predictability of suggested models. All the compounds are within 
the applicability domain of the proposed models and were evaluated correctly. 

Keywords: Quantitative structure-activity relationship (QSAR); DPP-4 inhibitors; Combinatorial protocol in multiple 
linear regression (CP-MLR) analysis; Chemometric descriptors; Imidazolopyrimidine amides. 

1. Introduction

Therapeutics based on Glucogon-like peptide-1 (GLP-1a) is among the novel and promising targets to cure type 2 
diabetes [1-3]. The active and natural form of GLP-1, the incretin hormone GLP-1 (7-36), is secreted from intestinal L-
cells after the intake of meals. The stimulation of insulin secretion, inhibition of glucogon release, delay in gastric 
emptying and promotion of β-cell trophism in intestinal L-cells are advantageous to glucose homeostasis in both the 
animal models and human [4,5]. Studies revealed that GLP-1 levels are noticeably reduced in type 2 diabetics and 
exogenous infusion of it may lead to normal insulin response to glucose [6-8] and this fact is the basis for GLP-1 and its 
analogeus as novel treatments of type 2 diabetes. One such example of a GLP-1 analogue is exenatide [9,10]. Half-
maximal effective concentration of 10 pM of the most potent incretin hormone, GLP-1 (7-36), is required to show its 
effects on pancreatic β-cells [11]. The biological functions of GLP-1 (7-36) are exerted through circulation and binding 
to the GLP-1 receptor that is highly expressed in pancreatic β-cells. After secretion GLP-1 (7-36) is rapidly degraded by 
DPP4 (EC 3.4.14.5) to afford inactive GLP-1 (9-36) under normal physiological conditions. The apparent half-life for 
GLP-1 (7-36) in this quick inactivation process is 60-90s. It is evinced that due to this natural degradation mechanism 
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less than 50% of released active GLP-1 (7-36) can reach circulation [12]. Thus it is apparent that a DPP4 inhibitor can 
prevent degradation of and lead to potentiation of GLP-1 and further improve glucose and insulin homeostasis [13,14]. 

DPP4, ubiquitously expressed throughout the body, is a nonclassical and sequence-specific serine protease. Membrane-
bound DPP4 is highly expressed in the endothelium of the capillary bed in close proximity to intestinal L-cells where 
secretion of GLP-1 takes place. The other form which circulates in plasma is soluble form of DPP4 plays a little role in 
the cleavage of GLP-1 [15,16]. Vildagliptin [17], sitagliptin [18], saxagliptin [19] and alogliptin [20] are examples of small 
molecule DPP4 inhibitors which have demonstrated ability to lower blood glucose and HbA1c levels and to improve 
glucose tolerance in type 2 diabetic patients [21]. Several novel series of azolopyrimidine amines, containing an 
aromatic or heteroaromatic group on the azolo ring, as potent and selective DPP4 inhibitors were reported in view of 
medicinal chemistry efforts to discover novel scaffolds [22]. The substitution of aromatic or heteroaromatic group on 
the azolo ring in these compounds showed enhancement in the binding affinity to DPP4 but displayed high levels of the 
human ether-à-go-go related gene (hERG) and sodium channel inhibition.  

As an attempt to minimize undesired hERG and sodium channel activities a novel series of imidazolopyrimidine amides 
as a highly potent and selective class of DPP4 inhibitors has been reported by Meng et al. [23]. The general structure of 
these analogues is shown in Figure 1 and structural variations are given in Table 1. 
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Figure 1 General structures of imidazolopyrimidine derivatives 

In the present communication a 2D-quantitative SAR (2D-QSAR) has been conducted to provide the rationale for drug-
design and to explore the possible mechanism of the action. In the congeneric series, where a relative study is being 
carried out, the 2D-descriptors may play important role in deriving the significant correlations with biological activities 
of the compounds. The novelty and importance of a 2D-QSAR study is due to its simplicity for the calculations of different 
descriptors and their interpretation (in physical sense) to explain the inhibition actions of compounds at molecular 
level. 

2. Material and methods 

2.1. Data-set 

For present work the imidazolopyrimidine amides (Table 1), along with their in vitro human DPP4 inhibition activity, 
have been taken from the literature [23]. The inhibition activity reported in terms of Ki is expressed as pKi on a molar 
basis and considered as the dependent variable for the present quantitative analysis. 
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Table 1 Structural variations and DPP-4 binding affinities of imidazolopyrimidine amides (see fig. 1 for general 
structure) 

Cpd. R 

pKi(M)a 

Obsdb. 
 Calculated 

 Eq. (7)  Eq. (8)   Eq. (9)  Eq. (10)  PLS 

1 racemic 9.15  8.98  8.94  9.01  9.06  8.99 

2 chiral 7.93  8.08  8.03  7.93  8.10  7.83 

3c OEt (chiral) 9.40  8.98  8.94  9.01  9.06  8.99 

4 
N

 
8.62  8.81  8.80  8.77  8.64  8.94 

5 N
 

8.54  8.45  8.46  8.43  8.68  8.75 

6 
O

N

 
8.66  8.47  8.68  8.50  8.32  8.50 

7c 
O

NH

 
8.51  8.40  8.42  8.52  8.29  8.44 

8 N

NH

 

8.30  8.26  8.30  8.18  8.26  8.22 

9 
N

NH

 
8.06  8.30  8.33  8.33  8.28  8.14 

10 
HN

N
O

 
9.00  8.82  8.95  8.95  8.72  8.81 

11 
N

OMe

 

8.51  8.52  8.53  8.63  8.32  8.59 

12 
N

H
N

MeO2S

 

9.70  9.52  9.55  9.49  9.59  9.56 

13 
N

N

MeO2S  
9.30  9.37  9.41  9.33  9.42  9.39 

14 
MeO2S

N

 

9.52  9.70  9.54  9.76  9.56  9.56 

15 N N
NH

 

9.05  8.75  8.73  8.81  8.74  8.87 

16 
N

S
NH

 
8.18  8.43  8.25  8.43  8.56  8.21 

17c 
O

N NH

 
8.70  8.54  8.49  8.91  8.65  8.71 

18 
O

N

 
9.22  9.22  9.19  9.01  8.86  9.10 
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19 N N
NH

 
8.74  8.70  8.68  8.88  8.72  8.82 

20 O N
NH

 
8.42  8.73  8.91  8.59  8.58  8.59 

21c 
N

N

 
8.59  8.49  8.67  8.63  8.40  8.58 

22 N N

Et

NH
 

8.96  8.75  8.73  8.62  9.03  8.94 

23 N N
NH

 

8.70  8.74  8.93  8.53  8.97  8.83 

24 
S NH

 
8.49  8.44  8.27  8.48  8.56  8.51 

25c 
N

N

 
9.15  9.18  8.98  9.04  8.78  8.85 

26 
N

N

 
8.59  8.46  8.65  8.61  8.47  8.60 

27c 
O NH

 
8.4  8.75  8.56  8.69  8.67  8.50 

28 
O N

 
8.52  8.70  8.51  8.86  8.64  8.56 

29 N

S
NH

N

 

8.30  8.56  8.55  8.32  8.67  8.27 

30 
HN

N

NH

 
8.33  8.06  8.22  8.38  8.30  8.48 

31 N

N

 

8.27  8.57  8.40  8.61  8.30  8.30 

32 
N

NH

 
8.82  8.68  8.67  8.68  8.83  8.81 

33 
N NH

 
8.85  8.68  8.50  8.61  8.55  8.56 

34c 
N

NH

 
8.89  8.68  8.67  8.68  8.76  8.77 

aOn molar basis; bTaken from reference [23]; cCompounds in test set. 
 

For modeling purpose, the complete data-set was divided into training- and test-sets. The training-set was used to 
derive statistical significant models while the test-set, consisting nearly 20% of total compounds, was employed to 
validate such models. The selection of test-set compounds was made through SYSTAT [24] using the single linkage 
hierarchical cluster procedure involving the Euclidean distances of the binding activity, pKi values. The test-set 
compounds were selected from the generated cluster tree in such a way to keep them at a maximum possible distance 
from each other. In SYSTAT, by default, the normalized Euclidean distances are computed to join the objects of cluster. 
The normalized distances are root mean-squared distances. The single linkage uses distance between two closest 
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members in clustering. It generates long clusters and provides scope to choose objects at intervals. Due to this reason, 
a single linkage clustering procedure was applied.  

2.2. Molecular descriptors 

The structures of the compounds (Table 1), under study, have been drawn in 2D ChemDraw [25] and were converted 
into 3D objects using the default conversion procedure implemented in the CS Chem3D Ultra. The generated 3D-
structures of the compounds were subjected to energy minimization in the MOPAC module, using the AM1 procedure 
for closed shell systems, implemented in the CS Chem3D Ultra. This will ensure a well-defined conformer relationship 
across the compounds of the study. All these energy minimized structures of respective compounds have been ported 
to DRAGON software [26] for computing the descriptors corresponding to 0D-, 1D-, and 2D-classes. The combinatorial 
protocol in multiple linear regression (CP‐MLR) [27] analysis and partial least‐squares (PLS) [28-30] procedures have 
been used in the present work for developing QSAR models. A brief description of the computational procedure is given 
below. 

2.3. Model development  

The CP-MLR is a ‘filter’-based variable selection procedure for model development in QSAR studies. Its procedural 
aspects and implementation are discussed in some of our publications [31-36]. The thrust of this procedure is in its 
embedded four ‘filters’. They are briefly as follows: filter-1 seeds the variables by way of limiting inter-parameter 
correlations to predefined level (upper limit ≤ 0.79); filter-2 controls the variables entry to a regression equation 
through t-values of coefficients (threshold value ≥ 2.0); filter-3 provides comparability of equations with different 
number of variables in terms of square root of adjusted multiple correlation coefficient of regression equation, r-bar; 
filter-4 estimates the consistency of the equation in terms of cross-validated r2 or q2 with leave-one-out (LOO) cross-
validation as default option (threshold value 0.3 ≤ q2 ≤ 1.0). All these filters make the variable selection process efficient 
and lead to a unique solution. In order to collect the descriptors with higher information content and explanatory power, 
the threshold of filter-3 was successively incremented with increasing number of descriptors (per equation) by 
considering the r-bar value of the preceding optimum model as the new threshold for next generation. Furthermore, in 
order to discover any chance correlations associated with the models recognized in CP-MLR, each cross-validated model 
has been put to a randomization test [37,38] by repeated randomization of the activity to ascertain the chance 
correlations, if any, associated with them. For this, every model has been subjected to 100 simulation runs with 
scrambled activity. The scrambled activity models with regression statistics better than or equal to that of the original 
activity model have been counted, to express the percent chance correlation of the model under scrutiny. 

To support the findings, a partial least squares (PLS) analysis has been carried out on descriptors identified through CP-
MLR. The study facilitates the development of a ‘single window’ structure‐activity model and help to categorize the 
potentiality of identified descriptors in explaining the DPP4 inhibition activity profiles of the compounds. It also gives 
an opportunity to make a comparison of the relative significance among the descriptors. The fraction contributions 
obtainable from the normalized regression coefficients of the descriptors allow this comparison within the modeled 
activity. 

2.4. Applicability domain  

The utility of a QSAR model is based on its accurate prediction ability for new compounds. A model is valid only within 
its training domain and new compounds must be assessed as belonging to the domain before the model is applied. The 
applicability domain is assessed by the leverage values for each compound [39,40]. The Williams plot (the plot of 
standardized residuals versus leverage values, h) can then be used for an immediate and simple graphical detection of 
both the response outliers (Y outliers) and structurally influential chemicals (X outliers) in the model. In this plot, the 
applicability domain is established inside a squared area within ±x(s.d.) and a leverage threshold h*. The threshold h* is 
generally fixed at 3(k + 1)/n (n is the number of training-set compounds and k is the number of model parameters) 
whereas x = 2 or 3. Prediction must be considered unreliable for compounds with a high leverage value (h > h*). On the 
other hand, when the leverage value of a compound is lower than the threshold value, the probability of accordance 
between predicted and observed values is as high as that for the training-set compounds. 
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3. Results and discussion 

3.1. QSAR results 

For the compounds in Table 1, a total number of 479 descriptors belonging to 0D- to 2D- classes of DRAGON have been 
computed and were subjected to CP-MLR analysis. All the 34 compounds of data set were further divided into training-
set and test-set. Seven compounds (nearly 20% of total population) have been selected for test-set through SYSTAT. 
The identified test-set was then used for external validation of models derived from remaining twenty seven compounds 
in the training-set. The squared correlation coefficient between the observed and predicted values of compounds from 
test-set, r2Test, was calculated to explain the fraction of explained variance in the test-set which is not part of 
regression/model derivation. It is a measure of goodness of the derived model equation. A high r2Test value is always 
good. But considering the stringency of test-set procedures, often r2Test values in the range of 0.5 to 0.6 are regarded as 
logical models. Following the strategy to explore only predictive models, CP-MLR resulted one model in three 
descriptors, five models in four descriptors and sixteen models in five descriptors at upper limit of filter-1. The highest 
significant of them, in statistical sense, are given through Equations (1)-(10): 

pKi= 7.583 + 1.556(0.241)Ms+0.716(0.215)BELe5+ 0.729 (0.241)MATS2p 

n = 27, r = 0.812, s = 0.271, F = 14.904, q2LOO = 0.515, q2L5O = 0.504, r2Test= 0.125            (1) 

pKi= 7.267 +1.503(0.229)Ms + 0.300(0.121)PJI2 + 0.985(0.256)BELv3  

+ 0.738(0.223)MATS2p 

n = 27, r = 0.844, s = 0.254, F = 13.731, q2LOO = 0.565, q2L5O = 0.516, r2Test= 0.632             (2) 

pKi = 8.043 – 0.677(0.253)Mv + 2.308(0.381)Ms – 0.880(0.255)nDB  

+ 0.635(0.248)BELv3 

n = 27, r = 0.836, s = 0.260, F = 12.856, q2LOO = 0.524, q2L5O = 0.537, r2Test= 0.527             (3) 

pKi = 7.935 + 2.678(0.448)Ms – 0.806(0.249)nDB  – 0.619 (0.246)IC1 

+ 0.575(0.199)BELe5 

n = 27, r = 0.832, s = 0.263, F = 12.380, q2LOO = 0.507, q2L5O = 0.594, r2Test= 0.525              (4) 

pKi = 8.031 + 1.239(0.235)Ms + 0.315(0.127)PJI2 + 0.991(0.272)BELv3 

– 0.679(0.232)GATS2v  

n = 27, r = 0.831, s = 0.264, F = 12.295, q2LOO = 0.501, q2L5O = 0.513, r2Test= 0.501              (5) 

pKi = 8.080 + 1.325(0.227)MAXDN – 0.556(0.219)BELm8 + 0.706(0.345)BELv3 

+ 0.957(0.256)MATS2p  

n = 27, r = 0.821, s = 0.270, F = 11.449, q2LOO = 0.503, q2L5O = 0.525, r2Test= 0.513              (6) 

pKi = 7.360 + 1.914(0.288)Ms – 0.744(0.185)nDB + 0.214(0.101)PJI2  

+ 1.110(0.215)BELv3 + 0.765(0.192)JGI2 

n = 27, r = 0.901, s = 0.210, F = 18.170, q2LOO = 0.651, q2L5O = 0.600, r2Test= 0.548              (7) 
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pKi = 7.644 + 1.753(0.277)Ms – 0.774(0.188)nDB + 1.059(0.211)BELv3  

+ 0.729(0.196)JGI2 – 0.357(0.171)C-028 

n = 27, r = 0.900, s = 0.211, F = 18.042, q2LOO = 0.667, q2L5O = 0.690, r2Test= 0.579              (8) 

pKi = 6.629 + 1.573(0.194)Ms + 0.331(0.102)PJI2 + 0.798(0.249)BEHv1  

+ 0.705(0.232)BELv3 + 0.603(0.191)MATS2p 

n = 27, r = 0.898, s = 0.213, F = 17.656, q2LOO = 0.644, q2L5O = 0.696, r2Test= 0.616              (9) 

pKi = 8.310 + 1.327(0.208)Ms + 0.265(0.107)PJI2 + 0.669(0.172)BELe5 

– 0.723(0.208)MATS6e – 0.771(0.199)nCrHR  

n = 27, r = 0.883, s = 0.227, F = 14.972, q2LOO = 0.569, q2L5O = 0.550, r2Test= 0.511              (10) 

where n and F represent respectively the number of data points and the F-ratio between the variances of calculated and 
observed activities. The data within the parentheses are the standard errors associated with regression coefficients. In 
all above equations, the F-values remained significant at 99% level. The indices q2LOO and q2L5O (> 0.5) have accounted 
for their internal robustness. For all above models except equation (1) the r2Test values, obtained greater than 0.5, 
specified that the selected test-set is fully accountable for their external validation. The descriptors, in all above models, 
have been scaled between the intervals 0 to 1 [41] to ensure that a descriptor will not dominate simply because it has 
larger or smaller pre-scaled value compared to the other descriptors. In this way, the scaled descriptors would have 
equal potential to influence the QSAR models. The signs of the regression coefficients have indicated the direction of 
influence of explanatory variables in above models. The positive regression coefficient associated to a descriptor will 
augment the activity profile of a compound while the negative coefficient will cause detrimental effect to it. 

Though Equations (1)-(10) emerged as significant predictive models but Equations (7)-(10) remained statistically more 
efficient. The later four models, involving five descriptors in each, could estimate up to 81.22 percent of variance in 
observed activity of the compounds. In fact, a total number of sixteen such models, sharing 19 descriptors among them, 
have been obtained through CP-MLR and the most significant four of them have been documented through Equation 
(7)-(10). The shared 19 descriptors along with their brief description, average regression coefficients and total 
incidences are given in Table 2. 

Besides listed descriptors in Table 2, the other identified descriptors Mv is from constitutional and MAXDN is from 
topological class. The Mv represents mean atomic Van der Waals volume (scaled on carbon atom) (Equation 3) and 
MAXDN is maximal electrotopological negative variation (Equation 6). The further discussion is, however, based on the 
highest significant Equations (7)-(10). The derived statistical parameters of these four models have shown that these 
models are significant. These models were, therefore, used to calculate the activity profiles of all the compounds and 
are included in Table 1 for the sake of comparison with observed ones. A close agreement between them has been 
observed. Additionally, the graphical display, showing the variation of observed versus calculated activities is given in 
Figure 2 to ensure the goodness of fit for each of these four models. 

Descriptors Ms (mean electrotopological state) and nDB (number of double bonds in molecular structure) belong to 
constitutional class. From the sign of regression coefficients it is evident that higher value of mean electrotopological 
state (descriptor Ms) and lower number of double bonds (descriptor nDB) are helpful to augment the activity. The 
descriptor PJI2 participated in these models is topological class descriptor and represents 2D Petitijean shape index. 
The positive sign of regression coefficient of descriptor PJI2 suggest that a higher value of this descriptor is beneficiary 
to the DPP4 inhibition activity. The descriptors MATS2p (Moran autocorrelation of lag-2/weighted by atomic 
polarizabilities) and MATS6e (Moran autocorrelation of lag-6/weighted by atomic Sanderson electronegativities) are 
2D autocorrelation descriptors. It is evinced from the models mentioned above the descriptor MATS2p contributed 
positively and descriptor MATS6e negatively to the activity. Thus a higher value of descriptor MATS2p and a lower value 
of descriptor MATS6e will be supportive to enhance the inhibition activity. 

 

 



Parihar and Sharma/ GSC Biological and Pharmaceutical Sciences, 2020, 11(03), 130–144 

137 
 

Table 2 Identified descriptorsa along with their physical meaning, average regression coefficient and incidenceb, in 
modeling the DPP-4 binding affinity. 

S. No. Descriptor  Descriptor class Physical meaning 

Average 
regression 

coefficient 
(incidence) 

1 Ms Constitutional  Mean electrotopological state 1.835(15) 

2 nDB Constitutional Number of double bonds -0.685(11) 

3 HNar Topological Narumi harmonic topological index -1.304(2) 

4 PJI2 Topological 2D Petitijean shape index 0.280(7) 

5 IC1 Topological 
information content index of 
neighborhood symmetry of 1-order 

-0.585(1) 

6 BELm8 BCUT  
Lowest eigenvalue n.8 of Burden matrix/ 
weighted by atomic masses  

-0.479(1) 

7 BEHv1 BCUT  
Highest eigenvalue n.1 of Burden matrix/ 
weighted by atomic van der Waals  
volumes 

0.989(2) 

8 BELv3 BCUT  
lowest eigenvalue n.3 of Burden matrix/ 
weighted by atomic van der Waals  
volumes 

0.935(12) 

9 BELe5 BCUT  
lowest eigenvalue n.5 of Burden matrix/ 
weighted by atomic Sanderson 
electronegativities 

0.653(6) 

10 JGI2 
Galvez topological charge 
indices 

Mean topological charge index of order 2 
0.747(2) 

11 MATS5e 2D autocorrelations 
Moran autocorrelation of lag-5/ weighted 
by atomic Sanderson electronegativities 

-0.597(1) 

12 MATS6e 2D autocorrelations 
Moran autocorrelation of lag-6/ weighted 
by atomic Sanderson electronegativities 

-0.594(2) 

13 MATS2p 2D autocorrelations 
Moran autocorrelation of lag-2/ weighted 
by atomic polarizabilities 

0.694(5) 

14 GATS2v 2D autocorrelations 
Geary autocorrelation of lag-2/ weighted 
by atomic van der Waals  volumes 

-0.794(1) 

15 nCp Functional Number of total primary C (sp3) 
0.274(1), -
0.612(1) 

16 nCrHR Functional Number of ring tertiary C(sp3) -0.771(1) 

17 nNR2 Functional Number of tertiary aliphatic amines -0.702(1) 

18 C-028 Atom-centered fragments R--CR--X -0.464(6) 

19 C-032 Atom-centered fragments X--CX--X -0.458(2) 

aThe descriptors are identified from the five parameter models, emerged from CP-MLR protocol with filter-1 as 0.79, filter-2 as 2.0, filter-3 as 0.813, 
and filter-4 as 0.3 ≤ q2 ≤1.0 with a training set of 27 compounds. bThe average regression coefficient of the descriptor corresponding to all models 

and the total number of its incidence. The arithmetic sign of the coefficient represents the actual sign of the regression coefficient in the models 
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Figure 2 Plot of observed versus calculated pKi values for training- and test-set compounds. 

The participated descriptors BELe5 (lowest eigenvalue n.5 of Burden matrix/weighted by atomic Sanderson 
electronegativities), BELv3 (lowest eigenvalue n.3 of Burden matrix/weighted by atomic van der Waals volumes) and 
BEHv1 (highest eigenvalue n.1 of Burden matrix/weighted by atomic van der Waals volumes) belong to BCUT class. All 
these descriptors contributed positively to the activity suggesting that higher value of these will augment the activity.   

From Equations (7)-(10), it appeared that the descriptors nCrHR, a functional group accounting descriptor representing 
number of ring tertiary C(sp3) functionality in a structure and atom centered fragment accounting descriptor C-028 
showing R—CR--X type fragment in a molecular structure make negative contribution to activity and JGI2, mean Galvez 
topological charge index of order 2 shown positive correlation to the activity. In this way absence of number of ring 
tertiary C(sp3) functionality along with R—CR--X type fragment in a molecular structure and higher value of mean 
Galvez topological charge index of order 2 would be advantageous in improving the DPP4 inhibition activity of a 
compound.  

To corroborate the study further, a PLS analysis has also been carried out on 19descriptors identified through CP-MLR 
and results are given in Table 3. For this purpose, the descriptors have been autoscaled (zero mean and unit s.d.) to give 
each one of them equal weight in the analysis. In the PLS cross‐validation, three components have been found to be the 
optimum for these 19 descriptors and they explained 89.7% variance in the activity (r2 = 0.897).The MLR‐like PLS 
coefficients of these 19 descriptors are given in Table 3.  
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Table 3 PLS and MLR-like PLS models from the descriptors of five parameter CP-MLR models for DPP-4 binding affinity. 

A: PLS equation 

PLS components PLS coefficient (s.e.)a 

Component-1 0.196(0.015) 

Component-2 -0.113(0.019) 

Component-3 0.078(0.023) 

Constant 8.693 

B: MLR-like PLS equation 

S. No. Descriptor MLR-like coefficient (f.c.)b Order  

1 Ms 0.311(0.109) 2 

2 nDB 0.045(0.016) 17 

3 HNar -0.157(-0.55) 10 

4 PJI2 0.184(0.064) 9 

5 IC1 0.115(0.040) 13 

6 BELm8 -0.083(-0.029) 14 

7 BEHv1 0.318(0.111) 1 

8 BELv3 0.215(0.075) 3 

9 BELe5 0.210(0.073) 4 

10 JGI2 0.130(0.045) 12 

11 MATS5e -0.077(-0.027) 15 

12 MATS6e -0.131(-0.045) 11 

13 MATS6p -0.020(-0.007) 18 

14 GATS2v -0.055(-0.019) 16 

15 nCp 0.011(0.004) 19 

16 nCrHR -0.208(-0.072) 5 

17 nNR2 -0.184(-0.064) 8 

18 C-028 -0.187(-0.065) 7 

19 C-032 -0.205(-0.071) 6 

Constant  7.909 

C: PLS regression statistics Values 

n 27 

r 0.947 

s 0.148 

F 67.415 

q2LOO 0.851 

q2L5O 0.860 

r2Test 0.662 
aRegression coefficient of PLS factor and its standard error. bCoefficients of MLR-like PLS equation in terms of descriptors for their original values; 

f.c. is fraction contribution of regression coefficient, computed from the normalized regression coefficients obtained from the autoscaled (zero mean 
and unit s.d.) data. 

 

The calculated activity values of training- and test-set compounds are in close agreement to that of the observed ones 
and are listed in Table 1. For the sake of comparison, the plot between observed and calculated activities (through PLS 
analysis) for the training- and test-set compounds is given in Figure 2. Figure 3 shows a plot of the fraction contribution 
of normalized regression coefficients of these descriptors to the activity (Table 3). 
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Figure 3Plot of fraction contribution of MLR-like PLS coefficients (normalized) against 19 identified descriptors 
(Table 3) associated with DPP-4 binding affinity of the compounds. 

The PLS analysis in 19 identified descriptors revealed three components (Table 3) as optimum to explain the DPP4 
inhibition activity. The top ten descriptors in decreasing order of significance are BEHv1, Ms, BELv3, BELe5, nCrHR, C-
032, C-028, nNR2, PJI2 and HNar (Table 3, figure 3). Among these descriptors, BEHv1, Ms, BELv3, BELe5, nCrHR, C-028 
and PJI2 are part of Equations discussed above and convey same inferences in PLS analysis. The negative contributions 
of atom centered fragment descriptor C-032 (X--CX--X type fragment), functional group count descriptor nNR2 (number 
of tertiary aliphatic amine functionality in a molecule) and topological descriptor HNar (Narumi harmonic topological 
index) advocated lower value of these are helpful in improving the activity profile. It is also observed that PLS model 
from the dataset devoid of 19 descriptors (Table 3) remained inferior in explaining the activity of the analogues. 

3.2. Applicability domain 

On analyzing the applicability domain (AD) in the Williams plot (Figure 3) of the model based on the whole dataset 
(Table 4), no any compound has been identified as an obvious ‘outlier’ for the DPP4 inhibitory activity if the limit of 
normal values for the Y outliers (response outliers) was set as 3×(standard deviation) units. One of the compound (2; 
Table 1) was found to have leverage (h) values greater than the threshold leverage (h*); suggesting it as chemically 
influential compound. 

Table 4 Models derived for the whole data set (n = 34) for the DPP-4 binding affinity in descriptors identified through 
CP-MLR. 

Model r s F q2LOO Eq. 

pKi = 7.366 + 1.980(0.276)Ms – 0.762(0.176)nDB 

      + 0.231(0.092)PJI2 + 1.073(0.178)BELv3  

      + 0.731(0.181)JGI2 

0.880 0.216 19.331 0.653 (7a) 

pKi = 7.653 + 1.858(0.265)Ms – 0.844(0.176)nDB  

       + 1.081(0.175)BELv3 + 0.694(0.180)JGI2  

       – 0.426(0.156)C-028 

0.884 0.212 20.176 0.680 (8a) 

pKi = 6.571 + 1.600(0.184)Ms + 0.356(0.092)PJI2  

      + 0.764(0.241)BEHv1 + 0.777(0.180)BELv3 

      + 0.698(0.171)MATS2p 

0.884 0.213 20.026 0.156 (9a) 

pKi = 8.402 + 1.269(0.194)Ms + 0.295(0.098)PJI2  

      + 0.685(0.159)BELe5 – 0.834(0.187)MATS6e 

      – 0.792(0.185)nCrHR 

0.865 0.228 16.727 0.623 (10a) 

 



Parihar and Sharma/ GSC Biological and Pharmaceutical Sciences, 2020, 11(03), 130–144 

141 
 

 

Figure 4 Williams plot for the training-set and test- set for inhibition activity of DPP4 for the compounds in Table 1. 
The horizontal dotted line refers to the residual limit (±3×standard deviation) and the vertical dotted line represents 

threshold leverage h* (= 0.529).   

 

For both the training-set and test-set, the suggested model matches the high quality parameters with good fitting power 
and the capability of assessing external data. Furthermore, all of the compounds were within the applicability domain 
of the proposed model and were evaluated correctly. 

4. Conclusion 

The DPP4 inhibition activity of imidazolopyrimidine amides has been quantitatively analyzed in terms of chemometric 
descriptors. The statistically validated quantitative structure-activity relationship (QSAR) models provided rationales 
to explain the inhibition activity of these congeners. The descriptors identified through combinatorial protocol in 
multiple linear regression (CP-MLR) analysis have highlighted the role of mean electrotopological state (Ms), number 
of double bonds in molecular structure (nDB), 2D Petitijean shape index (PJI2), Moran autocorrelation of lag-2/ 
weighted by atomic polarizabilities (MATS2p), Moran autocorrelation of lag-6/weighted by atomic Sanderson 
electronegativities (MATS6e), lowest eigenvalue n.5 of Burden matrix/ weighted by atomic Sanderson 
electronegativities (BELe5), lowest eigenvalue n.3 of Burden matrix/ weighted by atomic van der Waals volumes 
(BELv3),  highest eigenvalue n.1 of Burden matrix/ weighted by atomic van der Waals volumes (BEHv1). In addition to 
these 2nd order mean Galvez topological charge index (JGI2), number of ring tertiary C(sp3) (nCrHR) and R--CR--X type 
structural fragments (C-028) have also shown prevalence to model the inhibitory activity.  

From statistically validated models, it appeared that the descriptors Ms, PJI2, JGI2, MATS2p, BELe5, BELv3 and BEHv1 
make positive contribution to activity and their higher values are conducive in improving the DPP4 inhibition activity 
of a compound. On the other hand, the descriptors nDB, C-028, nCrHR and MATS6e render detrimental effect to activity. 
Therefore, absence or lower number of double bonds (nDB), R--CR--X type structural fragment (C-028), number of ring 
tertiary C(sp3) (nCrHR) and lower value of descriptor MATS6e would be advantageous. Such guidelines may be helpful 
in exploring more potential analogues of the series. The statistics emerged from the test sets have validated the 
identified significant models. PLS analysis has further confirmed the dominance of the CP‐MLR identified descriptors. 
Applicability domain analysis revealed that the suggested models have acceptable predictability. All the compounds are 
within the applicability domain of the proposed models and were evaluated correctly. 
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